ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ ИНСТИТУТ ЭЛЕМЕНТООРГАНИЧЕСКИХ СОЕДИНЕНИЙ им. А.Н. НЕСМЕЯНОВА РОССИЙСКОЙ АКАДЕМИИ НАУК

На правах рукописи

Володин Александр Дмитриевич

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА ЭЛЕМЕНТООРГАНИЧЕСКИХ СОЕДИНЕНИЙ С НИЗКОЙ ТЕМПЕРАТУРОЙ ПЛАВЛЕНИЯ

1.4.4. – Физическая химия

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата химических наук

Москва – 2022

Работа выполнена в лаборатории рентгеноструктурных исследований Федерального государственного бюджетного учреждения науки Институт элементоорганических соединений им. А.Н. Несмеянова Российской академии наук (ИНЭОС РАН).

Научный руководитель:	Корлюков Александр Александрович доктор химических наук, профессор РАН, ведущий научный сотрудник лаборатории рентгеноструктурных исследований ИНЭОС РАН.
Официальные оппоненты:	Фукин Георгий Константинович
	доктор химических наук, профессор РАН,
	руководитель сектора
	рентгенодифракционных исследований,
	ведущий научный сотрудник Федерального
	государственного бюджетного учреждения
	науки Институт металлоорганической химии
	им. Г.А. Разуваева Российской академии
	наук
	Миняев Михаил Евгеньевич
	кандидат химических наук, старший
	научный сотрудник лаборатории
	направленной функционализации
	органических молекулярных систем
	Федерального государственного бюджетного
	учреждения науки Институт органической
	химии им. Н.Д. Зелинского Российской
	академии наук
Ведущая организация:	Федеральное государственное бюджетное
	учреждение науки «Федеральный
	исследовательский центр «Институт
	катализа им. Г.К. Борескова Сибирского
	отделения Российской академии наук»

Защита диссертации состоится «11» октября 2022 года в 11 часов на заседании диссертационного совета 24.1.161.01 по присуждению ученой степени кандидата химических наук при Федеральном государственном бюджетном учреждении науки Институт элементоорганических соединений им. А.Н. Несмеянова РАН по адресу: 119991, ГСП-1, г. Москва, В-334, ул. Вавилова, 28.

С диссертацией можно ознакомиться в библиотеке ИНЭОС РАН.

Автореферат разослан « » июня 2022 г.

Ученый секретарь

диссертационного совета 24.1.161.01 кандидат химических наук

But

Ольшевская В.А.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы. Элементоорганические соединения 13 и 14 групп используются как предшественники функциональных материалов (мономеры, ионные жидкости). Как правило, их молекулы характеризуются достаточно простым строением, а сами соединения зачастую являются жидкими при температуре («легкоплавкими»), поэтому комнатной изучение их пространственной структуры затруднено. Часть структурной информации можно получить с помощью спектральных методов (ЯМР, ИК) и квантовохимических расчетов, однако её интерпретация может быть неоднозначной. Наиболее надежная информация о структуре данных соединений может быть получена с монокристальной рентгеновской дифракции. помощью Таким образом, получение монокристаллов и их рентгенодифракционное исследование играют важную роль в развитии представлений о строении элементоорганических соединений И 14 групп, информация, полученная 13 а с помощью рентгеноструктурных исследований, может быть использована для установления строения, в том числе и жидкой фазы.

Кристаллизация in situ – один из методов, позволяющих получать образцов, являющихся монокристаллы из при комнатной температуре жидкостями или газами, для последующего рентгенодифракционного исследования. Процесс кристаллизации *in situ* является трудоемким, в виду необходимости тщательного подбора условий кристаллизации. Данный метод все чаще применяется для установления и изучения кристаллических фаз жидких и газообразных образцов. Тем не менее, количество элементоорганических соединений, для которых был успешно применен метод кристаллизации in situ, невелико по сравнению с органическими соединениями.

Таким образом, данная работа является актуальной, поскольку вносит вклад в совершенствование метода кристаллизации *in situ* и развитие представлений о строении элементоорганических соединений с низкой температурой плавления (около 0 °C и ниже).

Степень разработанности темы исследования. Кристаллизация in situ используется для установления кристаллической структуры легкоплавких соединений органических ряде научных групп за рубежом. В Элементоорганические соединения, по сравнению с их органическими аналогами, обычно являются более вязкими, менее устойчивыми и часто не способны к кристаллизации из жидкого состояния. Межмолекулярные равновесной взаимодействия в кристаллах легкоплавких элементоорганических соединений почти не изучены. Из-за недостатка данных о кристаллической структуре подобных соединений квантово-химические расчеты физико-химических свойств соединений данного ряда проводятся редко.

Целью настоящей работы является разработка комплексного метода установления и изучения кристаллической структуры элементоорганических соединений с низкой температурой плавления, а также их физико-химических свойств.

Основные задачи диссертационной работы можно разделить на:

• разработку и создание оборудования для кристаллизации *in situ* в дифрактометре;

• разработку методики кристаллизации *in situ* в дифрактометре;

• установление кристаллической структуры ряда легкоплавких элементоорганических соединений;

• изучение особенностей строения кристаллов легкоплавких элементоорганических соединений и выявление корреляций структура-свойство;

• сравнение различных подходов к изучению пути и энергетических характеристик твердотельных фазовых переходов на примере фазового перехода в кристалле октаметилциклотетрасилоксана [Me₂SiO]₄;

• изучение межмолекулярного взаимодействия и энергетических параметров реакции получения дифторкарбена (CF₂) из бромдифторметилтриметилсилана (Me₃SiCF₂Br).

Научная новизна. В данной работе описано создание оборудования для кристаллизации in situ, разработаны методики, установлена кристаллическая структура 15 легкоплавких элементоорганических соединений (12 кремний-, 2 германийорганических соединений и галлийорганической ионной жидкости). При этом, для 2 соединений было установлено существование нескольких фаз в интервале температур 100 – 298 К. При изучении кристаллической структуры Me₃SiCF₂Br было установлено, что связь С-Br ослаблена. Исследование реакции образования дифторкарбена ИЗ Me₃SiCF₂Br В различных условиях с квантовохимических использованием расчетов позволило определить термодинамические и энергетические параметры данной реакции в присутствии основания Льюиса и без него. Совокупность данных о строении 15 элементоорганических соединений с низкой температурой плавления И выявление ряда закономерностей их строения (корреляции) составляет научную новизну данной работы.

Теоретическая значимость. Для выявления механизма фазового перехода в молекулярных кристаллах и оценки его термодинамических параметров был впервые успешно применен метод молекулярной метадинамики *ab initio*. Показано, что применение статистического анализа физико-химических свойств кристаллических фаз элементоорганических соединений позволяет установить корреляционные зависимости между энергией кристаллической решетки и

температурой плавления, молекулярным объемом и площадью поверхности молекул.

Практическая значимость. Разработаны методики кристаллизации *in situ* и предложены подходы к изучению пути фазового перехода в кристалле, которые могут быть в дальнейшем применены для изучения широкого ряда органических и элементоорганических соединений.

Методология и методы диссертационного исследования основаны на анализе литературных данных, разработке методов кристаллизации *in situ*, проведении рентгеноструктурных исследований, квантово-химических расчетов, проектировании оборудования, написании программ управления, статистической обработки результатов, построении математического и физического обоснования и описания полученных результатов. Для изучения многих соединений применялась дифференциальная сканирующая калориметрия (ДСК). Для определения чистоты соединений применялась газо-жидкостная хроматография.

Основные положения, выносимые на защиту:

• Оригинальная методика кристаллизации *in situ*, ее применимость для широкого круга элементоорганических соединений.

• Кристаллическая структура изученных твердых фаз кремний-, германий- и галлийорганических соединений.

• Особенности строения кристаллов легкоплавких элементоорганических соединений и корреляции структура-свойство.

• Сравнение различных подходов к изучению пути и энергетических характеристик твердотельных фазовых переходов на примере фазового перехода в кристалле октаметилциклотетрасилоксана [Me₂SiO]₄;

• Межмолекулярное взаимодействие и энергетические параметры реакции получения дифторкарбена (CF₂) из бромдифторметилтриметилсилана (Me₃SiCF₂Br).

Личный вклад автора состоит в непосредственном участии во всех этапах диссертационного исследования: постановке задач, анализе литературных данных, подготовке и проведении рентгеноструктурных экспериментов и квантово-химических расчетов, интерпретации и обсуждении полученных данных, их обобщении, формулировке выводов работы и подготовке научных публикаций и докладов по теме исследования.

Достоверность полученных результатов следует из надежного установления структур представленных в работе соединений различными физико-химическими методами анализа; отсутствия противоречий между выводами, сделанными в результате выполнения работы, и известными литературными данными; экспертной оценки редакционных коллегий

высокоцитируемых журналов, в которых были опубликованы результаты данной работы.

Апробация работы. Основное содержание работы отражено в 8 публикациях, а именно: 3 – в научных журналах, рекомендованных ВАК, 5 – в сборниках тезисов докладов научных конференций. Отдельные разделы диссертации были представлены на Международной конференции по химической кристаллографии и структурной биологии («Третьи Стручковские чтения», Москва, Россия, 15–19 ноября 2021 года), Х Национальной кристаллохимической конференции (Чегет, Терскол, Россия, 4–10 июля 2021 года), XI International Conference on Chemistry for Young Scientists «Mendeleev 2019» (Санкт-Петербург, Россия, 9–13 сентября 2019 года), 32nd European Crystallographic Meeting (Вена, Австрия, 18–23 августа 2019 года), IX Национальной кристаллохимической конференции (Суздаль, Россия, 4–8 июня 2018 года).

Объем и структура работы. Диссертация изложена на 143 страницах; включает введение, литературный обзор, обсуждение результатов, экспериментальную часть, выводы, список литературы (124 источника) и приложение; содержит 70 рисунков и 3 таблицы.

Диссертационная работа выполнялась в соответствии с планами научноисследовательских работ в ИНЭОС им. А.Н. Несмеянова РАН в лаборатории рентгеноструктурных исследований в период с 2016 по 2022 гг. при финансовой поддержке Российского Фонда Фундаментальных Исследований (грант № 19-33-90196), а также стипендиальных программ Президента РФ и Правительства РФ. Автор выражает искреннюю благодарность к.х.н. А.Ф. Смольякову за обучение базовым методикам кристаллизации, помощь в проектировании и создании собственной установки кристаллизации in situ. В проведении рентгеноструктурных экспериментов и интерпретации результатов, к.х.н. А.В. Арзуманяну, к.х.н. А.А. Анисимову, к.х.н. Р.А. Новикову (ФГБУН ИОХ РАН) и д.х.н. В.Г. Лахтину (ГНЦ РФ АО "ГНИИХТЭОС") за предоставление образцов, дифференциальной Д.E. Архипову за проведение сканирующей к.х.н. калориметрии, к.х.н. А.В. Вологжаниной, к.х.н. И.В. Ананьеву, к.ф-м.н. М.Г. Медведеву, к.ф-м.н. К.Ю. Супоницкому и к.х.н. И.В. Федянину за плодотворные дискуссии по теме диссертации, а также всему коллективу лаборатории РСИ ИНЭОС РАН за поддержку.

ОСНОВНОЕ СОДЕРЖАНИЕ ДИССЕРТАЦИОННОЙ РАБОТЫ

Во введении к диссертации обоснована актуальность научного исследования, определены цели диссертационной работы.

В литературном обзоре (глава 1) проведен анализ развития метода и установок для кристаллизации *in situ*, а также анализ особенностей строения кристаллических фаз ряда элементоорганических соединений, строение которых было установлено ранее с использованием методики кристаллизации *in situ*.

Глава 2 (обсуждение результатов) состоит из шести разделов, в которых описаны разработанные методики и создание установки кристаллизации *in situ*; результаты изучения кристаллической структуры 15 легкоплавких элементоорганических соединений методом рентгеноструктурного анализа; результаты применения различных подходов к изучению пути фазового перехода на примере фазового перехода в кристалле октаметилциклотетрасилоксана; анализ энергетических параметров генерации дифторкарбена из легкоплавкого бромодифторметилтриметилсилана; анализ возможных корреляций физико-химических свойств кристаллических фаз легкоплавких элементоорганических соединений.

2.1. Создание установки для кристаллизации in situ

Основываясь на литературных данных, нами была разработана и создана установка кристаллизации *in situ*. Установка реализует идею перекристаллизации образца, помещенного в капилляр на головке гониометра, методом зонный плавки. Позиционирование нагревательного элемента (нихромовой нити) осуществляется с помощью высокоточного шагового двигателя. Шаговый двигатель управляется через соответствующий драйвер, подключенный к микроконтроллеру Arduino UNO. Микроконтроллер связывается с управляющим компьютером посредством Bluetooth, что позволяет управлять установкой при закрытых защитных дверцах дифрактометра. Для автоматизации процесса нами были написаны управляющие программы для персонального компьютера и микроконтроллера.

Использование своей установки кристаллизации *in situ* имеет ряд преимуществ:

- Оценочная себестоимость разработки и постройки собственного варианта установки в десятки раз меньше рыночной стоимости Optical Heating and Crystallization Device (OHCD).
- Полный доступ к спецификации оборудования, возможность свободной модификации и настройки оборудования.

Обычно, при использовании установки кристаллизации *in situ*, капилляр находится в строго вертикальном положении. Для использования установки на гониометрах с фиксированным углом χ , была разработана специальная гониометрическая головка, имеющая два дополнительных юстировочных винта, позволяющих отклонять капилляр от оси на 40° по двум направлениям.

2.2. Методики кристаллизации in situ

В связи с тем, что при проведении кристаллизации *in situ* с использованием зонной плавки некоторые образцы теряют кристалличность, нами были разработаны две методики кристаллизации *in situ* без использования внешнего нагревательного элемента. Первая методика заключается в проведении пузыря воздуха по капилляру при температуре близкой к температуре плавления

(Рисунок 1а). Такой подход позволяет достигнуть разворота микрокристаллов вдоль капилляра, что при последующей кристаллизации приводит к образованию практически идеального монокристалла. Важно отметить, что даже при резком охлаждении и спонтанной кристаллизации направления доменов кристаллов в капилляре совпадают и такой образец можно рассматривать как монокристалл с высоким параметром мозаичности.

Рисунок 1. Общая схема методики кристаллизации *in situ* посредством проведения пузырька (а) или вращением капилляра (б).

Вторая методика заключается в равновесном растворении и кристаллизации образца при медленном вращении капилляра (Рисунок 16). Согласно этому подходу, при использовании системы охлаждения образца в дифрактометре (холодный азот) можно достигнуть равновесной кристаллизации и плавления кристаллов в капилляре. При этом, во время вращения, кристалл будет расти только вблизи охлаждаемой стенки капилляра, а не во всем объеме, что в результате приводит к уменьшению числа кристаллических доменов и росту монокристалла.

2.3. Изучение строения элементоорганических соединений

Эффективность методик новых была кристаллизации in situ изучении продемонстрирована при кристаллической 15 структуры элементоорганических соединений (Рисунок 2), а именно: двух циклических силоксанов (1-11 и 2-1), двух силоксанолов (2-2 и 2-3), восьми органосиланов (2-4 – 2-11), двух 2-13) органогерманов (2-12)И И галийорганической ионной жидкости 2-14.

2.3.1. Силоксаны 1-11 и 2-1

Октаметилциклотетрасилоксан (соединение 1-11) представляет собой прозрачную жидкость с довольно высокой вязкостью, для которой после кристаллизации

 Рисунок
 2.
 Соединения,

 кристаллическую
 структуру

 которых
 удалось
 установить
 с

 использованием
 новых
 методик
 и

 установки кристаллизации *in situ*.
 с
 с
 с

установлено наличие двух фаз. Нам удалось определить кристаллическую структуру силоксана **1-11** при температурах 100, 150, 200, 210, 221, 230, 240, 250 и 270 К. Фазовый переход наблюдался в температурном интервале 230 – 238 К. Молекулы в низкотемпературой и высокотемпературной фазе находятся в конформациях *псевдокресло* и *псевдованна*, соответственно (Рисунок 3).

Рисунок 3. Конформации молекул 1-11 в низкотемпературной (150 K, (a)) и высокотемпературной (250 K, (б)) фазах.

В низкотемпературной фазе 1-11 ($P4_2/n$, Z = 4) *z*-координаты (по оси элементарной ячейки *c*) центров двух соседних молекул чередуются на половину параметра ячейки *c* (3.259 Å). При этом координаты центров двух соседних молекул по оси *c* отличаются на четверть параметра ячейки (1.721 Å) в высокотемпературной фазе. Так, при фазовом переходе соседние молекулы перемещаются относительно друг друга не менее чем на 1.53 Å (Рисунок 4), что сопровождается изменением пространственной группы на $I4_1/a$.

Рисунок 4. Относительное положение соседних молекул в низкотемпературной (а) и высокотемпературной (б) фазах соединения 1-11. Проекция на плоскость *ac*.

Силоксан 2-1 находится в жидком состоянии при температуре немного выше комнатной, и твердом при 0 °С (известные T_{пл}: -15.5 и 35.2 °С). Нам удалось вырастить монокристаллы 2-1 ($P2_1/c$, Z = 8) как с использованием метода *in situ*, так при охлаждении В холодильнике. И Кристалл, выращенный В капилляре, терял способность полностью к дифракции при нагревании до 20 °С. Одна из двух групп C₃H₄F₃ характеризуется транс-расположением относительно двух других (Рисунок 5).

Молекулы силоксана 2-1 образуют стопки вдоль оси а, каждая из стопок окружена шестью другими. Молекулы в стопках связаны основном В взаимодействиями Н… F и F…F. Так как в элементарной ячейке симметричнонезависимыми являются две молекулы, то они образуют два разных типа стопок. Эти стопки отличаются разворотом молекул в них относительно оси трансляции а и силой межмолекулярных взаимодействий между молекулами внутри стопки. Углы средними плоскостями между силоксановых циклов молекул и вектором трансляции *а* составляют 94.49(2)° и 104.08(2)° (Рисунок 6). Конформация двух сонаправленных трифторпропильных $(CF_3CH_2CH_2)$ заместителей обоих y молекул совпадает, а конформация третьего заместителя отличается. Это отличиям В силе приводит к межмолекулярных взаимодействий. B результате, в одном виде стопок молекулы

образуют два (расстояние H…F менее 2.7 Å) контакта H…F, а в другом – только один.

Рисунок 5. Молекулярное строение силоксана 2-1. Атомы водорода не показаны.

Стопки

кристалле силоксана 2-1. На рисунке

между

силоксанового

углы

молекулы и вектором трансляции а.

молекул

средней

цикла

6.

приведены

плоскостью

2.3.2. Силоксанолы 2-2 и 2-3

Кристаллическая структура изученных фаз 1,1,1,3,5,5,5гептаметилтрисилоксан-3-ола (2-2) и трис(триметилсилокси)силанола (2-3) схожа. Из-за того, что молекулы этих соединений обладают подвижными неполярными триметилсилоксильными (Me₃SiO-) группами и полярной спиртовой группой, оба соединения образуют Н-связанные тетрамеры в кристалле (Рисунок 7).

Центры инверсии тетрамера **2-2** располагаются на оси $\overline{4}$ ($P\overline{4}2_1c$, Z = 8). В свою очередь, тетрамеры 2-3 характеризуются наличием псевдо-оси $\overline{4}$ (*C*2/*c*, Z = 32). При понижении температуры кристалл **2-2** переходит в другую фазу ($P\overline{4}$). В ней наблюдаются два вида симметрически-неэквивалентных тетрамеров. В результате фазового расстояние перехода между атомами кислорода, образующими водородную связь, В высокотемпературной фазе 2-2 2.711(4) Å, составляет a В низкотемпературной 2.52 и 2.85 Å. В кристалле 2-3 расстояния О…О лежат в диапазоне 2.717(5)-2.779(6) Å.

Рисунок 7. Молекулярное строение силоксанолов 2-2 и 2-3 в кристалле и строение соответствующих H-связанных тетрамеров.

2.3.3. Органосиланы 2-4 - 2-11

Органосиланы 2-4 – 2-11 (Рисунок 8) не склонны образовывать в кристалле сильные специфические взаимодействия. Межмолекулярные взаимодействия в кристаллах соединений 2-4, 2-5, 2-8, 2-9 и 2-10 представлены исключительно $H \cdots H$ и C– $H \cdots O$ контактами. В соединениях 2-6 и 2-11 молекулы также взаимодействуют посредством $H \cdots Hal$ (Hal = F, Cl, Br) контактов. В кристалле соединения 2-7 атомы водорода фенильных циклов участвуют в C- $H \cdots \pi$ взаимодействии. Соединение 2-9 кристаллизуется в кубической сингонии, где все четыре заместителя при атоме кремния разупорядочены. В кристалле дисилана 2-10 молекулы также разупорядочены и расположены на центрах инверсии. В результате разупорядочения получается два очень похожих мотива упаковки, в которых атомы углерода, тем не менее, занимают одни и те же позиции. Соединение 2-11 является аналогом реактива Рупперта-Пракаша (Me_3SiCF_3), что обусловило сходство в характере упаковки.

Рисунок 8. Молекулярное строение органосиланов 2-4 – 2-11.

2.3.4. Органогерманы 2-12 и 2-13

Гексаметилдигерман (2-12) – маленькое самое германийорганическое соединение, которого строение удалось методом установить рентгеноструктурного анализа (на 2022 года). Строение апрель кристалла данного соединения было изучено при температурах 120 и 210 К ($P2_1/c$, Z = 8). Длина связи Ge–Ge в кристалле дигермана 2-12 составляет 2.417(1) Å для обоих симметричнонезависимых молекул. По данным Кембриджской

кристаллографической базы данных, связь Ge–Ge в кристалле дигермана **2-12** значительно короче средней (2.595 Å).

Молекулы в кристалле **2-12** находятся в заслоненной конформации (Рисунок 9). Углы С–Ge–Ge–C в кристалле **2-12** составляют 0.07(1)° и 1.15(1)°. Это, вероятно, связано с относительно низким энергетическим барьером поворота вокруг связи Ge–Ge (0.64 ккал/моль, PBE0/6-311G(d,p)).

Трет-бутилтриметоксигерман 2-13 — первое германийорганическое соединение с тремя метоксильными группами при атоме германия, строение которого удалось определить дифракционным методом анализа ($P2_1/n$, Z = 4).

Сложность в изучении подобных соединений заключается в высокой реакционной способности метоксильных групп при атоме германия. Молекулы в кристалле находятся в заторможенной конформации (Рисунок 9). Все три метоксильные группы молекулы закручены в одну сторону. Молекулы соединения **2-13** в кристалле упакованы слоями и образуют только слабые межмолекулярные взаимодействия С–Н…О и С–Н…Н–С.

2.3.5. Галлийорганическая ионная жидкость 2-14

Соединение 2-14 является галлийорганической ионной жидкостью с температурой плавления около 28-30 °C (*P6cc*, Z = 4). Катион 2-14 находится на оси 3, что делает только один лиганд при атоме галлия симметричнонезависимым. Сами лиганды разупорядочены.

Тетрахлоргаллат-анионы также находятся на осях симметрии: 2 (Ga3), 3 (Ga4) и 6 (Ga2) (Рисунок 10).

Рисунок 10. Молекулярное строение катиона (слева) и анионов (справа) галлийорганической ионной жидкости 2-14 в кристалле.

2.4. Изучение фазового перехода в кристалле 1-11

Фазовый переход в кристалле 1-11 представляет интерес в первую очередь для изучения свойств вещества в кристаллическом состоянии при температурах близких к температуре фазового перехода. Для анализа фазового перехода использовалась комбинация экспериментальных и теоретических методов, позволяющая наблюдать изменение геометрии молекул и их взаимного расположения в кристалле, а также оценить энергетические и термодинамические параметры.

В разделе 2.4.1 говорится про исследование 1-11 методом ДСК. Благодаря данным ДСК, был обнаружен широкий гистерезис температуры фазового перехода (от 216 до 260 К), а установленная энтальпия фазового перехода составила 1.04(7) ккал/моль.

2.4.2. Конформационный переход псевдокресло-псевдованна

Изучение фазового перехода в кристалле **1-11** было начато с анализа конформационного перехода. Поиск переходного состояния конформационного перехода *псевдокресло–псевдованна* проводился с помощью методики следования по внутренней координате процесса (IRC) в программе Gaussian 09.

Как И следовало ожидать, поверхность потенциальной энергии (ППЭ) оказалась очень пологой. Результатом поиска оказалась молекула конформации псевдотвист (Рисунок 11). В Разница в полной энергии между псевдокреслом и псевдотвистом составила 0.07 ккал/моль. Более достоверные расчетные данные могут быть получены использовании только при периодических граничных условий.

Рисунок 11. Конформация переходного состояния изолированной молекулы 1-11.

2.4.3. Моделирование теплового движения в 1-11

Сравнение теплового движения в кристаллах при разных температурах позволяет обнаружить колебания, способные привести к фазовому переходу. Для обнаружения таких колебаний применялись два независимых подхода: расчеты молекулярной динамики Борна-Оппенгеймера в программном комплексе VASP и расчет фононного спектра с использованием метода «замороженного фонона» (гармоническое приближение (ГП), программа PHON).

Расчет молекулярной динамики Борна-Оппенгеймера (МДБО) в программе VASP проводился с использованием метода PBE и комбинации плоских волн и псевдопотенциалов в качестве базисного набора при средних температурах системы 100, 150, 200, 210, 221, 230, 240, 250 и 270 К. Анализ расчетных траекторий показал, что при температуре 230 К и выше часть молекул (одна или две из четырех, представленных в элементарной ячейке) в кристалле перемещаются на 1.6 Å вдоль оси *c*, а затем возвращаются обратно в течении 4 пс. Расстояние, пройденное молекулой, приблизительно равно четверти параметра элементарной ячейки *c*.

При температурах 240, 250 и 270 К система претерпевает фазовый переход, отличный от перехода в низкотемпературную фазу. Конформации и положения молекул в новой «фазе» не могут быть отнесены ни к одной из известных фаз. Несмотря на то, что конформации молекул различались, силоксановый цикл всех молекул был почти плоским (5-7 атомов всегда находились в плоскости, Рисунок 12).

Рисунок 12. Пример конформации молекулы в промежуточной фазе.

Расчеты молекулярной динамики с увеличенным до 40 пс временем симуляции и расчет молекулярной динамики суперячейки 2x2x1 подтвердили существование промежуточной фазы. Показано, что система претерпевает «фазовый переход» спустя 8–13 пс с момента начала симуляции. Исходя из

продолжительности нахождения молекул в данном состоянии, можно сделать вывод о том, что оно представляет собой локальный минимум на ППЭ. Молекулы могут изменять свои конформации, фактически не покидая локального минимума ППЭ, и в дальнейшем перейти как в высокотемпературную, так и в низкотемпературную фазу.

Из нормальных мод колебаний и траекторий МДБО были рассчитаны анизотропные атомные смещения, которые для наглядного сравнения с экспериментом были представлены в виде эллипсоидов (Рисунок 13).

Сравнение параметров атомных смещений показало, что ни один из использованных методов не позволил достичь количественного согласия с экспериментом. В случае МДБО расчетные эллипсоиды похожи на экспериментальные, в то время как по результатам расчетов приближении гармоническом совпадает только направление оси, вдоль которой вытянуты эллипсоиды (максимальное отклонение составляет менее 4°). Таким образом, наблюдаемое расхождение вызвано вкладом ангармонических колебаний.

Рисунок 13. Сравнение эллипсоидов анизотропного смещения, полученных из экспериментальных данных, расчета фононов и молекулярной динамики.

2.4.4. Моделирование методом молекулярной динамики с ограничением внутренних координат

Так как переход, обнаруженный в рамках молекулярной динамики Борна-Оппенгеймера, не соответствуют фазовому переходу между известными фазами соединения 1-11, было решено провести расчет молекулярной динамики с рядом ограничений геометрии.

При использовании максимально доступного уровня описания системы (жесткие потенциалы PAW), фиксации относительного расположения молекул и плавного изменения ряда внутренних координат была получена величина барьера, равная 57 ккал/моль. Это позволило заключить, что изменение пространственного расположения атомов и молекул в кристалле не может быть описано как простое сочетание относительных смещений молекул в кристалле и конформационного перехода.

2.4.5. Расчет метадинамики в периодических граничных условиях

Наилучшим методом для изучения энергетического профиля процесса фазового перехода оказалась метадинамика *ab initio*. Этот подход позволил построить зависимость свободной энергии от обобщенной координаты процесса

(линейной комбинации расстояний между атомами в системе). Согласно результатам расчета, барьер составил всего 3.20 ккал/моль при переходе из низкотемпературной фазы в высокотемпературную и 4.27 ккал/моль в обратную сторону при средней температуре 238 К (Рисунок 14).

Рисунок 14. (а) Изменение свободной энергии в ходе фазового перехода из *I*4₁/*a* в *P*4₂/*n* при средней температуре 238 К. (б) Изменение внутренней координаты процесса в ходе расчетов метадинамики.

Этим расчетом также было подтверждено существование неупорядоченной фазы (Рисунок 14, область a-b), обнаруженной ранее (раздел 2.4.4). По результатам расчета ΔF фазового перехода составляет 1.07 ккал/моль (по данным ДСК, $\Delta H = 1.04(7)$ ккал/моль).

2.5. Изучение реакции Me₃SiCF₂Br с гексаметилфосфортриамидом

Бромдифторметилтриметилсилан **2-1** можно рассматривать как источник дифторкарбена и бромтриметилсилана (Me₃SiBr). Для изучения механизма образования дифторкарбена из Me₃SiCF₂Br, а также для сравнения реакций Me₃SiCF₂Br и Me₃SiBr с ГМФТА были выполнены квантово-химические расчеты. Расчетные профили свободной энергии Гиббса (PBE0/6-311+G(d, p)/PCM(глим)) и основные структурные параметры выделенных стационарных точек показаны на рисунке ниже (Рисунок 15).

Рисунок 15. Изменение свободной энергии Гиббса (слева) и структура соединений избранных стационарных состояний (справа).

Согласно литературным данным, дифторметиленирование алкенов проходит через два переходных состояния (TS) и один интермедиат. При этом сами механизмы реакции образования CF_2 до конца не изучены. Проведенное нами исследование включает оценку путей образования CF_2 и само дифторметиленирование, что позволило детально описать ход реакции.

Для некаталитического согласованного вытеснения дифторкарбена из Me₃SiCF₂Br свободная энергия активации ΔG_{akr} в точке TS-1 равна 39.0 ккал/моль, при изменении энергии во время реакции +13.7 ккал/моль. При взаимодействии Ме₃SiCF₂Br с ГМФТА был обнаружен ван-дер-ваальсовый комплекс S-2, но этот комплекс может и не быть минимумом на поверхности свободной энергии. Переходное состояние для образования дифторкарбена (TS-2) имеет энергию 30.5 ккал/моль, что заметно меньше, чем для некатализируемой диссоциации. В TS-2 геометрия координационного окружения атома кремния близка к тригональной бипирамиде, при этом присоединяющийся ГМФТА и уходящий фрагмент CF₂Br расположены в апикальных положениях. Дальнейшее движение по координате образованию фактически не катиона реакции приводит к связанных триметилсилил-ГМФТА, карбена и бромид-аниона (S-2, 28.2 ккал/моль). Последующее вытеснение свободного карбена из C-2 приводит к уменьшению ΔG на 6.2 ккал/моль. Следует отметить, что образование свободного дифторкарбена при взаимодействии Me₃SiCF₂Br с ГМФТА термодинамически невыгодно и, вероятно, обратимо. Однако, если присутствует какой-либо реагент, который может необратимо улавливать дифторкарбен, реакция Me₃SiCF₂Br с ГМФТА может быть смещена вправо, что приведет к образованию соли [Me₃SiOP(NMe₂)₃]Br, структура которой была установлена в рамках данной работы.

Для взаимодействия бромтриметилсилана с ГМФТА, помимо образования рыхлого комплекса (С-3), ΔG_{akr} составляет 14.5 ккал/моль и в основном определяется энтропийным вкладом. В продукте (точка Р-3) бромид-анион связан с атомом кремния катиона Me₃SiP(O)(NMe₂)₃. Хотя ΔG в этой точке составляет 8.3 ккал/моль, из-за того, что соль [Me₃SiOP(NMe₂)₃]Вг выпадает в осадок, реакция проходит практически количественно.

2.6. Корреляции физико-химических свойств и структурных параметров

Были изучены литературные данные о кристаллической структуре 64 элементоорганических соединений, обладающих низкой температурой плавления. Анализ кристаллической упаковки позволил разделить элементоорганические соединения на две группы.

Первую группу составляют Si, Ge, Sn, P и S-содержащие соединения. Гетероатомы в данных соединениях окружены оболочкой из углеводородных заместителей (в том числе перфторированных) и не участвуют в каких-либо межмолекулярных взаимодействиях. Таким образом, все структурообразующие межмолекулярные взаимодействия соединений данной группы представляют собой слабые классические и неклассические водородные связи (Х…H, H…H, С…H; X = Hal, O, N, C).

Вторая группа включает фторорганические ароматические соединения и соединения с перфторированными группами, в которых межмолекулярные взаимодействия между атомами фтора играют важную роль в стабилизации кристаллической упаковки.

Корреляции отношений V_{mol}/E_{latt} и V_{mol}/S_{mol} для рассмотренных соединений показаны на рисунке ниже (Рисунок 16). Величины V_{mol} для большинства соединений равны 120–160 Å³ и их S_{mol} не превышает 170 Å². Максимальное значение E_{latt} было обнаружено в кристалле (PhCH=CH)₂Sn(C₂F₅)₂ и составило 30.7 ккал/моль. При этом, в большинстве соединений энергия решетки варьируется в интервале от 10 – 20 ккал/моль.

Рисунок 16. Корреляция молекулярного объема (Å³) (а) и площади поверхности Хиршфельда (Å²) (б) с энергией кристаллической решетки (ккал/моль) для большинства соединений. Красные пунктирные линии – это линии тренда.

Область, описывающая зависимость температуры плавления (Т_{пп}) от энергии решетки (Рисунок 17), была разделена на две группы, обозначенные синим и черным цветом. Мы разделили все данные на черную, синюю и красную группу. Черные точки соответствуют соединениям с $S_{mol} < 170$ Å², а синие треугольники соответствуют S_{mol} > 170 Å². Красный квадрат соответствует соединению (CH₃)₂PC₂H₄P(CH₃)₂. Значение тангенса (T_{пл}/E_{latt}) для «черной» группы составляет от 13.1 до 25.5 (среднее составило 19.9). соответствующий тангенс для «голубой» группы составляет от 6.82 до 13.1 (среднее составило 10.1). соединений «черной» группы имеют небольшие размеры и Молекулы большинство из них не образуют прочных межмолекулярных контактов. В соединений «голубой» группы присутствуют молекулярные кристаллах взаимодействия, такие как галогенные связи или водородные связи С-Н… . Соединение (СН₃)₂РС₂Н₄Р(СН₃)₂ было отнесено к отдельной группе (красной), поскольку ее значение тангенса (T_{пл}/E_{latt}) соответствует «черной» группе, но площадь поверхности молекулы по Хиршфельду слишком велика для нее (216 Å).

Рисунок 17. График зависимости температуры плавления (К) от энергии решетки (ккал/моль). Черные точки соответствуют соединениям с $S_{mol} < 170$ Å². Синие треугольники соответствуют соединениям, у которых $S_{mol} > 170$ Å².

В главе 3 (экспериментальная часть) описаны общие положения, использованные методики кристаллизации *in situ*, статистической обработки, рентгеноструктурного анализа, ДСК и квантовохимических расчетов.

Приложение содержит таблицу, содержащую результаты анализа строения кристаллов по Хиршфельду и расчета энергий кристаллической решетки.

ЗАКЛЮЧЕНИЕ

1. Разработаны оригинальные методики кристаллизации легкоплавких соединений, заключающиеся в использовании перемещения градиента температур в жидкой фазе элементоорганических соединений и позволяющие достичь их кристаллизации вблизи точки плавления. Их эффективность доказана для 15 элементоорганических соединений.

2. Показано, что большая часть изученных соединений образует кристаллические фазы, устойчивые в области температур от температуры плавления и до 100 К. Фазовые превращения, сопровождающиеся понижением симметрии обнаружены для октаметилциклотетрасилоксана и 1,1,1,3,5,5,5-гептаметилтрисилоксан-3-ола.

3. Основным типом межмолекулярных взаимодействий в кристаллах легкоплавких элементоорганических соединений являются слабые взаимодействия Н…Н. В ряду таких соединений обнаружена эмпирическая зависимость температуры плавления легкоплавких соединений от площади поверхности молекулы и энергии кристаллической решетки.

4. На примере фазового перехода в октаметилциклотетрасилоксане продемонстрирована эффективность метадинамики для изучения как механизма, так и барьера фазового перехода в молекулярных кристаллах. В свою очередь, методы молекулярной динамики *ab initio* Борна-Оппенгеймера вне зависимости от использования ограничений, наложенных на координаты атомов, позволили в лучшем случае достичь лишь качественного согласия с экспериментом.

СТАТЬИ В ЖУРНАЛАХ

1. Arzumanyan A.V., Goncharova I.K., Novikov R.A., Milenin S.A., Boldyrev K.L., Solyev P.N., Tkachev Y.V., **Volodin A.D.**, Smol'yakov A.F., Korlyukov A.A., Muzafarov A.M. Aerobic Co or Cu/NHPI-catalyzed oxidation of hydride siloxanes: synthesis of siloxanols // Green Chemistry. -2018. -Vol. 20, No 7. -P. 1467–1471.

2. Volodin A.D., Korlyukov A.A., Smol'yakov A.F. Organoelement compounds crystallized *in situ*: weak intermolecular interactions and lattice energies // Crystals. — 2019. — Vol. 10, N_{2} 1. — P. 15.

3. Supranovich V.I., **Volodin A.D.**, Korlyukov A.A., Hu J., Dilman A.D. Reaction of (bromodifluoromethyl)trimethylsilane with HMPA: Structural studies // Journal of Fluorine Chemistry. — 2021. — Vol. 250. — P. 109881.

ТЕЗИСЫ ДОКЛАДОВ

1. Volodin A.D., Korlyukov A.A., Smol'yakov A.F. Crystal structure of lowmelting organoelement compounds // International Workshop on Chemical Crystallography and Structural Biology (The 3rd Struchkov Meeting). — 15–19 November 2021. — Russia, Moscow. — Book of Abstracts. — PP. 70–71.

2. Володин А.Д., Корлюков А.А., Смольяков А.Ф. Кристаллизация *in situ* элементоорганических соединений: слабые межмолекулярные взаимодействия // Х Национальная кристаллохимическая конференция. — 5–10 июля 2021. — Россия, Терскол. — Сборник тезисов. — С. 69.

3. Volodin A.D., Korlyukov A.A., Smol'yakov A.F. X-ray and computational study of solid octamethylcyclotetrasiloxane // XI International Conference on Chemistry for Young Scientists «Mendeleev 2019». — 9–13 September 2019. — Russia, Saint–Petersburg. — Book of Abstracts. — P. 441.

4. Volodin A.D., Korlyukov A.A., Smol'yakov A.F. In Situ Crystallization of the Viscous Organosilicon Liquids // 32nd European Crystallographic Meeting. — 18–23 August 2019. —Austria, Vienna. — Book of Abstracts. — P. e689.

5. Володин А.Д., Корлюков А.А., Смольяков А.Ф. Изучение структуры монокристаллов кремнийорганических жидкостей // IX Национальная кристаллохимическая конференция. — 4-8 июня 2018. — Россия, Суздаль. — Сборник тезисов. — С. 38.