ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ ИНСТИТУТ ЭЛЕМЕНТООРГАНИЧЕСКИХ СОЕДИНЕНИЙ ИМ. А.Н.НЕСМЕЯНОВА РОССИЙСКОЙ АКАДЕМИИ НАУК

на правах рукописи

ОСИПОВА Елена Сергеевна

МЕЖМОЛЕКУЛЯРНЫЕ ВЗАИМОДЕЙСТВИЯ И КИСЛОТНО-ОСНОВНЫЕ РЕАКЦИИ С УЧАСТИЕМ ГИДРИДОВ МЕТАЛЛОВ 9-10 ГРУПП С ПИНЦЕТНЫМИ ЛИГАНДАМИ

02.00.08 - Химия элементоорганических соединений 02.00.04 - Физическая химия

ДИССЕРТАЦИЯ

на соискание ученой степени

кандидата химических наук

Москва 2018

Список со	кращений
1. Обзор л	итературы9
1.1. Bo	цородные связи
1.1.1.	ИК спектральные критерии образования ВС и ее термодинамические
характеристи	1ки 10
1.1.2.	ЯМР спектральные критерии образования ДВС и определение ее
длины	
1.1.3.	Проявление водородной связи в УФ-вид. спектрах
1.1.4.	Кристаллографические данные о структуре ДВС 16
1.2. Де	гидрирование амин-боранов комплексами переходных металлов 9-10
рупп	
1.2.1.	Взаимодействие амин-боранов с комплексами переходных металлов. 18
1.2.2.	Комплексы 9 группы (Co, Rh, Ir) 22
1.2.3.	Комплескы 10 группы (Ni, Pd, Pt) 31
2. Обсуз	кдение результатов
2.1.	Взаимодействие пинцетных комплексов иридия с кислотами и
снованиями	
2.2.	Водородные связи (^{<i>t</i>Bu} PCP)IrH(Cl), (PCN)IrHCl и (^{<i>t</i>Bu} PCP)IrH(Cl)(CO) с
протонодонс	рами
2.3.	Исследование взаимодействия комплексов иридия (^{tBu} PCP)IrH(Cl) и
(^{tBu} PCN)IrH((1) с основаниями 44
(^{<i>t</i>Bu} PCN)IrH(2.2. Исс	ст) с основаниями 44 следование дегидрирования амин-боранов в присутствии комплексов
(^{tBu} PCN)IrH() 2.2. Исс ^{Bu} PCP)IrH(C	ст) с основаниями
(^{tBu} PCN)IrH() 2.2. Исс ^{Bu} PCP)IrH(C 2.2.1.	С1) с основаниями
(^{tBu} PCN)IrH(2.2. Исс ^{tBu} PCP)IrH(C 2.2.1. реакции деги	 с основаниями
(^{rBu} PCN)IrH(2.2. Исс ^{Bu}PCP)IrH(С 2.2.1. реакции деги 2.2.2.	44 следование дегидрирования амин-боранов в присутствии комплексов (1) и (^{rBu} PCN)IrH(Cl)
(^{tBu} PCN)IrH(2.2. Исс ^{tBu} PCP)IrH(C 2.2.1. реакции деги 2.2.2.	44 следование дегидрирования амин-боранов в присутствии комплексов (1) и (^{rBu} PCN)IrH(Cl)
(^{/Bu} PCN)IrH((2.2. Исс ^{/Bu} PCP)IrH(C 2.2.1. реакции деги 2.2.2. 2.2.3.	 44 следование дегидрирования амин-боранов в присутствии комплексов 1) и (^{rBu}PCN)IrH(Cl)
(^{rBu} PCN)IrH((2.2. Исс ^{rBu} PCP)IrH(C 2.2.1. реакции деги 2.2.2. 2.2.3. условиях	 44 следование дегидрирования амин-боранов в присутствии комплексов 1) и (^{tBu}PCN)IrH(Cl)

Содержание

2.3. Взаимодействие пинцетного комплекса (^{tBu} PCP)PdH с органическими и				
металлорганическими кислотами78				
2.3.1. Диводородные связи и перенос протона с участием (^{tBu} PCP)PdH и				
органических кислот				
2.3.2. Взаимодействие (Bu PCP)PdH с гидридами вольфрама LW(CO) ₃ H (L =				
Ср, Тр) как кислотами				
2.3.3. Диводородно-связанные комплексы между двумя гидридами и перенос				
протона90				
2.3.4. Взаимодействие биметаллической ионной пары с диметиламин-				
бораном				
3. Экспериментальная часть106				
4. Выводы112				
5. Список литературы 113				

Введение

Актуальность работы. Одной из важных фундаментальных задач современной химии является установление механизмов стехиометрических реакций и каталитических процессов с участием комплексов переходных металлов с целью выявления закономерностей процессов и факторов управления реакциями на молекулярном уровне. Данная проблема сохраняет свою актуальность в контексте глобальной задачи создания новых источников энергии, синтетических процессов и новых материалов, решение которых во многом базируется на использовании комплексов переходных металлов как катализаторов.

Развитие водородной энергетики рассматривается мировым сообществом как один из способов решения глобальных проблем, связанных с истощением запасов ископаемых углеводородов, и экологических проблем, связанных с их использованием и утилизацией. Научно-исследовательские коллективы по всему миру занимаются разработкой технологий, необходимых для развития безопасных систем хранения и использования водорода. В настоящее время в качестве систем для хранения и получения водорода активно изучаются амин-бораны. Процессы каталитического дегидрирования аминборанов дают возможность получения не только водорода, но и разнообразных продуктов, важных с фундаментальной и практической точек зрения. В литературе постоянно появляются работы, посвященные синтезу и исследованию каталитической активности новых металлокомплексов. Однако доля работ, посвященных изучению механизмов данных реакций, особенно с учётом внутри- и межмолекулярных нековалентных взаимодействий, по-прежнему относительно невелика. В связи с этим проведение фундаментальных исследований механизмов реакций с переносом протона и гидрида, а также выявление мягких способов активации E-H (E = H, M, O, N, B) связей за счет актуальным межмолекулярных взаимодействий является для современной элементоорганической и физической химии. Решение данных проблем выводит понимание природы исследуемых явлений на новый уровень и создает фундаментальную базу для решения практических задач.

Целью работы является исследование роли межмолекулярных взаимодействий с участием гидридов переходных металлов в стехиометрических и каталитических реакциях с переносом ионов водорода, с использованием в качестве объектов комплексы металлов 9-10 групп с пинцетными лигандами. Для достижения этой цели поставлены следующие задачи:

- **1.** Изучить взаимодействие комплексов иридия с органическими кислотами и основаниями; определить условия образования и структуры межмолекулярных комплексов.
- Исследовать взаимодействие гидрида палладия с ХН- и МН-кислотами; установить условия образования и структуры водородно-связанных комплексов, получить их термодинамические характеристики и исследовать особенности механизма переноса протона.
- **3.** Изучить каталитическую активность гидридных комплексов иридия и биметаллических комплексов в дегидрировании амин-боранов, установление структур интермедиатов и механизмов каталитических реакций.

Объекты и методы исследования. В качестве объектов исследования выбраны комплексы иридия с пинцетными лигандами (tBu PCP)IrH(Cl), (tBu PCP)IrH(Cl) ((tBu PCP)= 2,6-бис[(ди-*mpem*-бутилфосфино)метил]бензол, tBu PCN = 1-[3-[(ди-*mpem*-бутилфосфино)метил]фенил]-1H-пиразол) и комплекс палладия (tBu PCP)PdH. В качестве кислот и оснований использованы: фторированные спирты, фенолы, нитрилы, пиридины, амин-бораны (Me₃NBH₃, Me₂NHBH₃, tBuNH₂BH₃, NH₃BH₃) и гидриды вольфрама LW(CO)₃H (L = η^5 -C₅H₅ (Cp), HB(pz)₃ (Tp)). Исследование проводилось методами ИК, ЯМР и УФ-видимой спектроскопии при температурах 190 ÷ 300 К в средах различной полярности с привлечением квантово–химических расчетов методом функционала плотности.

Научная новизна и практическая ценность. В результате проведенного исследования установлено образование водородно-связанных комплексов между иридиевыми гидридохлоридами (^{tBu}PCP)IrH(Cl), (^{tBu}PCP)IrH(Cl)(CO), (^{tBu}PCN)IrH(Cl) и органическими кислотами Cl…H-X. Протоноакцепторная способность хлоридного лиганда увеличивается в ряду (tBu PCP)IrH(Cl)(CO) < (tBu PCP)IrH(Cl) < комплексах В (^{Bu}PCN)IrH(Cl). Координация органических оснований (нитрилов и пиридинов) к иридиевым гидридохлоридам с пинцетными ^{tBu}PCP и ^{tBu}PCN лигандами происходит предпочтительно аксиально, то есть в *транс*-положение к гидриду, что приводит к удлинению связи Ir-Cl. Показано, что относительная стабильность и константы образования комплексов (^{tBu}PCP)IrH(Cl) с азотными основаниями увеличиваются в ряду 2гидроксиметилпиридин < MeCN < PhCN < Py. Установлено, что комплексы иридия (^{tBu}PCP)IrH(Cl) и (^{tBu}PCN)IrH(Cl) проявляют каталитическую активность в реакции дегидрирования амин-боранов, причем комплекс (^{*t*Bu}PCN)IrH(Cl) демонстрирует более высокие скорости и рост конверсии каталитической реакции. Впервые охарактеризованы *in situ* металлсодержащие интермедиаты каталитического дегидрирования амин-боранов

комплексами (^{tBu}PCP)IrH(Cl) и (^{tBu}PCN)IrH(Cl). Предложен принципиально новый механизм дегидрирования амин-боранов, ключевой стадией которого является активация В-Н и N-Н связей. Показано влияние строения и электронных свойств пинцетного лиганда на каталитическую активность гидридохлоридов иридия, а также на механизм процесса. Замена ^{нви}РСР лиганда на ^{нви}РСМ лиганд открывает новый путь реакции, благодаря увеличению стерической доступности металлического центра. Установлены условия образования диводородных связей (^{ви}РСР)РdH со спиртами, фенолами и MH-кислотами, получены их спектральные и термодинамические характеристики, а также расстояния Н…Н в ДВС комплексах. Найдены структуры водородно-связанных комплексов и комплексов с молекулярным водородом, образующихся в качестве интермедиатов реакции между (^{Hu}PCP)PdH и металлорганическими кислотами LW(CO)₃H (L = Cp, Tp). Показано, что термодинамическая стабильность ионных интермедиатов в системе (^{*н*ВиРСР)МН/LW(СО)₃Н увеличивается при замене циклопентадиенильного лиганда на} триспиразолилборатный. Установлено, что продуктом реакции между двумя нейтральными гидридами является биметаллическая ионная пара [LW(CO)₂(µ-CO)…Pd(^{tBu}PCP)], которая способна подобно FLP («фрустрированной Льюисовой паре») присоединять молекулярный водород. Впервые показана обратимо активность биметаллической ионной пары [LW(CO)₂(µ-CO)…Pd(^{tBu}PCP)] в реакции каталитического дегидрирования амин-боранов, найдены условия ее протекания. Продемонстрирована принципиальная роль биметаллической системы в активации связей ВН и NH аминборана.

Апробация работы. Материалы исследования были представлены на конференции «Химия элементоорганических соединений и полимеров» (Москва, 2014), 10^{ой} Международной школе-конференции по металлоорганической химии (Камерино, Италия, 2015), Международной конференции «Проблемы металлоорганической и координационной химии» (Разуваевские чтения, Нижний Новгород, 2013, 2015), XXVII Международной конференции по металлоорганической химии (Мельбурн, Австралия, 2016), Европейской конференции по химии бора (Суздаль, 2016), 4^{ой} Европейской конференции по неорганической химии (Копенгаген, Дания, 2017).

Публикации. По теме диссертации опубликовано 11 научных работ (в том числе: 4 статьи в научных журналах, рекомендованных ВАК, 7 тезисов в сборниках докладов научных конференций).

Структура и объем работы. Диссертация изложена на 128 страницах текста; включает введение, литературный обзор, обсуждение результатов, экспериментальную

часть, выводы и список литературы (157 наименований); содержит 70 рисунков и 16 таблиц.

Работа выполнена в лаборатории гидридов металлов ИНЭОС РАН при финансовой поддержке РФФИ (гранты № 14-03-00594, 15-53-78027), РНФ (грант № 14-13-00801) и соглашения между Российской академией наук и Национальным советом исследований (CNR) Италии.

Автор выражает искреннюю благодарность проф. Л.М. Эпштейн, д.х.н. О.А. Филиппову, к.х.н. Е.М. Титовой, к.х.н. А.А. Павлову, к.х.н. С.В. Сафронову и докторам А. Россин и М. Перуззини (ICCOM CNR, Италия) за участие в выполнении отдельных этапов работы и обсуждении результатов.

Список сокращений

- 2-ГМП 2-гидроксиметилпиридин;
- АБ амин-боран;
- ВС водородная связь;

ДВС – диводородная связь/диводородно-связанный (по отношению к комплексу);

ДМАБ – диметиламин-боран;

ПНАФ – *пара*-нитроазофенол (4-(4'-нитрофенилаза)фенол);

ПНФ – *пара*-нитрофенол;

ПФФ – пара-фторфенол;

РСА – рентгеноструктурный анализ;

ТГФ – тетрагидрофуран;

ТФЭ – трифторэтанол (CF₃CH₂OH);

ГФИП – гексафторизопропанол ((СГ3)2СНОН);

ПФТБ – перфтор-*трет*-бутанол ((СГ₃)₃СОН);

Ру – пиридин.

1. Обзор литературы

1.1. Водородные связи.

Водородная связь – очень важное явление, объединяющее три науки: химию, физику и биологию. Концепция водородной связи (ВС) относится к числу наиболее старых и фундаментальных, она активно развивалась, начиная с 20-х годов XX века и до наших дней, во многом определяясь как появлением и развитием физико–химических методов (из них главные – это ИК, ЯМР и рентгеновской спектроскопии), так и развитием теоретических квантово-химических подходов к расчетам [1-4].

Классической водородной связью в органической химии (X–H···:B, Схема 1) называется взаимодействие между частично положительно заряженным атомом водорода донора протона X–H и акцептором протона :В. В роли акцептора может выступать неподеленная электронная пара элемента (обычно s-, р-электроны) или π -электроны непредельных соединений и ароматической системы [1]. Типичными донорами протона являются органические и неорганические кислоты, спирты, фенолы, первичные и вторичные амины и другие соединения со связью водород-гетероатом (атом с большей электроотрицательностью, чем электроотрицательность атома водорода – O, N, S, Hal, (F, Cl, Br, I) или C [5]). По энергии образования водородные связи делят на слабые (< 4 ккал·моль⁻¹), средней силы (4–15 ккал·моль⁻¹) и сильные (15–40 ккал·моль⁻¹) [4]. Перенос протона к основанию :В приводит к водородно-связанным комплексам ионного типа [X]⁻…[HB]⁺, поэтому водородные связи X–H···:В рассматриваются как интермедиаты реакций данного типа.

 $X-H+:B \leftrightarrows X-H\cdots:B \leftrightarrows [X]^{-}\cdots[HB]^{+} \leftrightarrows [X]^{-}//[BH]^{+}$ Нейтральные Водородно- Водородно-связанная Ионная пара молекулы связанный ионная пара

Схема 1

Стоит отметить, что в донорной группе X–H атом X не обязан быть более электроотрицательным, чем H. Так, установлено, что группа М–H может быть донором протона [6-8] в BC, если в молекуле имеются электроноакцепторные лиганды (например, CO группы), обеспечивающие появление частично положительного заряда на атоме водорода H. Водородные связей с участием металлоорганических соединений в роли акцепторов протона активно исследуются с 1990 года. Установлено, что неподелённые пары d-электронов атомов переходных металлов могут выступать в роли акцепторов как в меж-, так и во внутримолекулярных водородных связях [9, 10]. Экспериментально и

теоретически определенные свойства XH^{δ+...,δ-}М связей (спектральные изменения в ИК и ¹Н ЯМР спектрах, увеличение зарядов связанных атомов, удлинение X–H связи и линейность фрагмента) оказались сходными со свойствами классических связей.

Наиболее важным событием оказалось обнаружение в середине 90-х годов внутри- и межмолекулярных водородных связей между двумя атомами водородами: водородом донора протона Х-Н и гидридным водородом гидридных комплексов: Х-Н^{δ+...δ-}Н-М. Сразу две группы опубликовали краткие сообщения об обнаружении внутримолекулярной водородной связи Ir–H····HX (группа Морриса для X=N [11] и группа Крабтри для X=O, N [12]). Спектральное доказательство образования межмолекулярной связи с гидридом вольфрама появилось немного позже (группы Эпштейн и Берке [13]). Этот интригующий тип BC, Моррис назвал протон-гидридным взаимодействием, однако общепринятым стало предложенное Краптри [12] название диводородная связь (ДВС).

ДВС можно определить как важный тип водородной связи, в котором частично положительно заряженный атом водорода связан с частично отрицательно заряженным атомом гидридного водорода той же или другой молекулы, Х-Н^{δ+...,δ-}H-M (Схема 2). Диводородно-связанные комплексы так же, как и классические BC, являются интермедиатами реакции переноса протона. В отличие от классических BC перенос протона может приводить к ди(поли)гидриду, комплексу с молекулярным водородом, либо к выделению водорода.

 $\begin{array}{cccc} L_nM-H+H-X\leftrightarrows L_nM-H\cdots H-X\leftrightarrows [L_nM(\eta^2-H_2)]^+\cdots [X]^- \rightarrow L_nMX+H_2\\ Hейтральные Диводородно- Водородно-связанная молекулы связанный ионная пара <math>I_nM(H_2)]^+//-[X] \\ KOMПЛЕКС & Дигидрид \end{array}$

Схема 2

Повышенный интерес к диводородной связи определяется его значимостью во многих важных вопросах, как, например, создание новых материалов, связанных с хранением водорода, или изучение механизмов металлоорганических реакций с переносом протона.

1.1.1. ИК спектральные критерии образования ВС и ее термодинамические характеристики

Инфракрасная спектроскопия широко используется для изучения образования ВС и ДВС, поскольку обладает короткой временной шкалой, позволяющей регистрировать раздельно исходные и образующиеся водородно-связанные комплексы. Диводородная ХН...НМ, как и классическая водородная связь слабой или средней силы, характеризуется

появлением новой более широкой и интенсивной полосы $v_{XH}^{cвя3}$, смещенной в низкочастотную область. При этом величины смещения полосы: $\Delta v_{XH} = v_{XH}^{cвя3} - v_{XH}^{cвоб}$, связанные с удлинением X–H связи, велики и соответствуют сдвигам до 450 см⁻¹. Такие изменения демонстрируют образование водородной связи и помогают определить ее силу. Для установления протоноакцепторных центров используются области валентных колебаний групп, имеющих характеристические полосы поглощения. В органических соединениях имеются в виду такие заместители, как CO, NO, NO₂, PO и др., в металлоорганических – соответствующие лиганды, в гидридных комплексах – те же лиганды и гидридный лиганд (М–Н).

Правило определения центра координации очень простое: при связывании с донорами протона полоса, принадлежащая протоноакцепторной группе, как центру координации, сдвигается к низким частотам (- Δv), тогда как все другие полосы смещаются в высокочастотную сторону (+ Δv). Новые полосы часто проявляются в виде плеча на исходных полосах. То есть спектральным критерием образования ДВС (МН···HX) служит низкочастотное смещение полосы v_{MH} (- Δv_{MH}) и высокочастотное (+ Δv) полос других лигандов в металлоорганическом гидриде.

Использование низких температур увеличивает возможности метода, особенно при исследовании образования слабых BC или ДBC, а также нестабильных соединений. При низких температурах равновесие образования BC и ДBC смещается вправо и, соответственно, интенсивность связанных полос v_{XH} увеличивается. Легко окисляемые гидриды металлов возможно исследовать в низкотемпературном криостате, используя кювету, продутую сухим аргоном. Так удалось исследовать ДBC-комплексы протонодоноров с очень нестабильными гидридами (тригидрид ниобия [14] и тетрагидрид галлия [15]).

Энтальпию и энтропию ДВС можно определить методом Вант-Гоффа из констант образования ДВС-комплексов температурах. Кроме при разных того, ДЛЯ межмолекулярных ВС выведено несколько корреляционных соотношений, позволяющих очень легко вычислить энтальпию ΔH_{HB} . Уравнения 1-3 связывают величины ΔH_{HB} в ккал·моль⁻¹ с величинами сдвигов (Δv_{XH}) или с увеличением интегральной интенсивности полос донора протона (ΔA_{XH}). В наших исследованиях показано [13, 16, 17], что эти корреляции, первоначально полученные Иогансеном при исследовании классических ВС органических кислот и оснований [18-21], применимы к диводородным связям. Для целого ряда систем установлена близость величин ΔH_{HB} , определенных с помощью корреляционных уравнений 1-3 к полученным методом Вант-Гоффа.

$$-H^{\circ} = \frac{18\Delta v}{720 + \Delta v}$$
(1)
$$-H^{\circ} = 3.0(\Delta v_{HX})^{1/2}$$
(2)
$$-H^{\circ} = 2.9(\sqrt{A_{BC}} - \sqrt{A_{ucx}})$$
(3)

Величины энтальпии ΔH_{HB} зависят от партнера (Рисунок 1) и растворителя, и их сравнение для разных систем возможно лишь при постоянстве партнера и среды. Поэтому был разработан подход, позволяющий охарактеризовать протонодонорную способность, названную фактором кислотности P_i , и протоноакцепторную способность, фактор основности E_j , различных кислот и оснований в водородной связи (уравнение 4) [19].

Рисунок 1. Зависимость энтальпии образования ДВС, $-\Delta H_{\text{ДВС}}$, от фактора кислотности $P_i(\text{HX})$, где HX = ⁱPrOH, MeOH, CFH₂CH₂OH, CF₃CH₂OH, (CF₃)₂CHOH, (CF₃)₃COH.

$$-H^{\circ} = \Delta H_{11} P_i E_j \tag{4}$$

где ΔH_{11} относится к водородно-связанной стандартной паре PhOH – Et₂O ($P_1 = E_1 = 1.00$).

Введение энтальпии стандартной H-связанной пары, ΔH_{11} , в знаменатель уравнения делает параметры E_j и P_i независимыми (по определению) от партнера и среды. Показана применимость уравнения (4) для характеристики протоноакцепторной способности гидридных лигандов в ДВС (МН···HX) [13, 16, 22]. Интересно, что при этом фактор основности E_j можно определить на основе теоретических расчетов, использующих корреляцию $\Delta H/\Delta v$ (1) для получения расчетной v_{HX} частоты ($\Delta H^{\text{теор}}$ (Δv)). Так, прекрасное соответствие между величинами факторов основности E_j , рассчитанными из корреляции $\Delta H^{\text{теор}}$ (Δv) и $\Delta H^{\text{эксп}}$, показано для BH····HX связи для Me₂NH·BH₃ (ДМАБ) (E_j (BH) = 0.62) [22] и (Ph₃P)₂Cu(η^2 -BH₄) (E_j (BH) = 0.91) [23]. Этот подход эффективен и для определения фактора кислотности в водородной связи, что ясно из примера определения P_i (NH) = 0.45 для NH группы ДМАБ [24]. Сила ДВС обычно изменяется от слабой к средней (экспериментально определенные $\Delta H_{\text{дBC}}$ величины типично меньше чем -8 ккал·моль⁻¹), а их стуктурные, электронные и спектральные черты подобны чертам классических BC, имеющих ту же энтальпию.

1.1.2. ЯМР спектральные критерии образования ДВС и определение ее длины.

ЯМР спектры широко используются для установления типа образующихся водородных связей. Установлено два спектральных критерия, первый из которых связан с определением факта образования водородной связи, а второй с установлением места координации, как и в случае выше описанных критериев в ИК спектральных исследованиях.

Первый критерий: слабопольное смещение сигнала донора протона (δ_{XH}) означает образование водородно-связанных комплексов разных типов. Этот критерий неспецифичен, так как относится как к ДВС, так и к классическим ВС. Величины сдвига для протонодоноров $\Delta \delta_{XH} = -(2-4)$ м.д. значительны, как и описанные выше смещения Δv_{XH} в ИК спектрах.

Второй критерий: высокопольное смещение ¹Н сигнала гидридного протона Н (δ_{MH}), Δδ_{MH}= +(0.8–1.0) м.д. доказывает координацию по МН–лиганду, то есть образование ДВС комплексов [1, 25].

Следует иметь в виду, что свободные и связанные молекулы при обычном интервале температур находятся в состоянии быстрого обмена, поэтому ЯМР параметры зависят от положения равновесия образования ДВС комплексов. Такая ЯМР спектральная картина характерна для образования внутри- и межмолекулярных водородных связей с органическими, металлоорганическими или неорганическими основаниями [26].

Уменьшение в 1.5-3 раза времени спин-решеточной релаксации (T_{1min}) служит важным дополнительным критерием образования ДВС комплексов с помощью ЯМР спектров. Так, существование внутримолекулярной диводородной связи N–H····H–M в комплексах [(η^5 -C₅H₄(CH₂)_nNMe₂H⁺)RuH(L₂)]BF₄ (n = 2, 3; L₂ = dppm [27], (PPh₃)₂ [28]) и ее отсутствие для L₂=(P(OPh)₃)₂ [29] установлены с помощью этого параметра. Изменения T_{1min} использованы для подтверждения образования межмолекулярных ДВС связей, на примерах WH(CO)₂(NO)(PR₃)₂ [13], ReH₂(CO)(NO)(PR₃)₂ [30, 31], (CP₃)RuH(CO)₂ [32]. Величины параметров $\Delta\delta_{MH}$ и ΔT_{1min} в силу существования вышеупомянутого быстрого обмена можно рассматривать как средневзвешенные между свободными и связанными ДВС молекулами гидридов. То есть, они зависят от факторов, влияющих на положение

равновесия МН + НХ ⇔ МН···НХ и константу *К*_{нВ}, таких как температура, концентрация, сила протонодонора, а также природа растворителя [13, 30-32].

Важным преимуществом спектроскопии ЯМР ¹Н является возможность определить расстояние Н···Н в ДВС комплексах растворов с помощью T_1 спин-решеточных релаксационных измерений [26]. Короткие контакты H_M ···H_X вызываются сильным гомоядерным диполярным взаимодействием, обеспечивающим дополнительный вклад в ядерную диполь-дипольную релаксацию (5). Этот метод, первоначально предложенный для η^2 –H₂ комплексов [25], широко используется для определения как внутримолекулярных [16, 21], так и межмолекулярных [19] Н···Н расстояний.

$$d_{H-H} = 5.817 \frac{1}{\sqrt[6]{\nu(\frac{1}{T_{1\min}^{c_{693}}} - \frac{1}{T_{1\min}^{c_{600}}})}}$$
(5)

Расстояние $H^{\delta-...}H^{\delta+}$ служит хорошим индикатором силы взаимодействия и усиливается для связей с более высокой энергией [1]. Расчетные данные демонстрируют линейную корреляцию между энтальпией, $\Delta H_{\text{двс}}$, и d($H^{\delta-...}H^{\delta+}$) для близких к линейным М-H···H_X связей (Рисунок 2).

Рисунок 2. Корреляция между величинами $\Delta H_{\text{ДBC}}$ и Н···Н расстояниями для ДВС комплексов различных гидридов.

Экспериментальные данные по $\Delta H_{\text{дBC}}$ (определенные из ИК измерений) и d(H···H), полученные из изменений времени релаксации T_{1min} гидридного лиганда, менее многочисленны. Однако, данные для нескольких гидридов, полученные в малополярном растворителе CH₂Cl₂, позволили продемонстрировать такую же корреляцию между $H_{\text{дBC}}$ и d_{H···H} (Pucyhok 3).

Рисунок 3. Корреляция между энтальпией ($\Delta H^{\circ}_{\text{дBC}}$) и расстоянием Н···Н для ДВС комплексов указанных гидридов со спиртами ($T\Phi \Im = CF_3CH_2OH$, $\Gamma \Phi \Pi \Pi = (CF_3)_2CHOH$ и $\Pi \Phi T \Xi = (CF_3)_3COH$) в CH₂Cl₂.

Увеличение Н–Н обменных констант $J_{\text{Ha-Hb}}$ между протонами соседних М–Н связей в полигидридах [33] было предложено использовать как еще один сенсор для определения силы ДВС, однако, он не нашел широкого применения. На примере тригидридного комплекса рутения Cp*RuH₃(PCy)₃ показано, что при взаимодействии с различными протонодонорами $J_{\text{Ha-Hb}}$ константа возрастает пропорционально усредненным химическим сдвигам δ_{Ha} и δ_{Hb} с увеличением концентрации и силы протонодонора [34]. Еще одно свидетельство образования ДВС можно получить с помощью 2D ¹H NOESY. Так, межмолекулярная ДВС [HRe₂(CO)₉]⁻ с ТФЭ подтверждена 2D NOESY экспериментом при 221 К, показавшим кросс-пик между гидридным сигналом (при -7.90 м.д.) и ОН резонансом (при 2.95 м.д.) [35].

1.1.3. Проявление водородной связи в УФ-вид. спектрах.

Метод электронной (УФ-видимой) спектроскопии давно применялся для исследования кислотно-осно́вных равновесий с участием органических кислот и оснований. В качестве протонодоноров при этом использовались фенолы, содержащие различные хромофорные группы, поскольку положение длинноволновых полос их нейтральных и ионных форм может существенно различаться: полосы фенолов проявляются в спектрах в области 250 – 350 нм, а их анионов – в области 350 – 600 нм [36]. При этом, варьируя заместители и длину цепи сопряжения, можно менять силу кислоты и положение максимума полосы поглощения. К тому же эти полосы чувствительны к образованию водородной связи. При образовании водородной связи Х⁻····⁺НВ – небольшой сдвиг полосы аниона в

коротковолновую область (до 30 нм). Данный подход был успешно перенесен на исследования водородных связей и переноса протона к гидридным комплексам переходных металлов [37, 38].

1.1.4. Кристаллографические данные о структуре ДВС.

Рентеноструктурный анализ не сразу позволил определять положение атома водорода в молекуле. Даже к настоящему времени с развитием техники исследования эта задача не всегда надежно решается. В таких случаях используются нейтронографические данные как более надежные. Создание Кембриджской базы данных (Cambridge Structural Database, CSD) позволило Крабтри с соавторами провести поиск, обнаруживший короткие H…H контакты в системах, содержащих боргидриды и XH-кислоты, и означавших образование XH…HB [39]. Число структур с межмолекулярными M-H…H-X взаимодействиями (X = O, N), которые могут быть рассмотрены как "истинные", для 12 структурно охарактеризованных комплексов с межмолекулярным расстоянием M-H…H-X меньше 2.2 Å.

Фрагменты Н…Ү в типичных классических межмолекулярных водородных связях имеют структуру близкую к линейной. Маленькие отклонения (до 10-12°) от линейного расположения встречаются достаточно часто [4, 5], в то время как сильные отклонения относят обычно к бифуркатным взаимодействиям или к водородным связям значительно более слабым [40]. Гистограмма, построенная для структур с короткими H_X … H_M контактами (Рисунок 4), тождественна хорошо известному распределению X-H…Y углов в классических ВС. Такая *направленность* является важным индикатором истинной природы H-связи для тех случаев взаимодействия, когда величина d(H…X) уменьшается до размеров характерных для взаимодействий Ван-дер-Ваальсового типа [4, 5].

Рисунок 4. Распределение X-H···H_M углов для межмолекулярных H···H контактов.

Так, в полном соответствии с определением водородной связи структурные исследования свидетельствуют о коротком контакте между частичным положительным и частично отрицательным зарядами, $H^{\delta-} \cdots H^{\delta+}$ (меньше суммы Ван-дер-Ваальсовых радиусов, 2.4 Å), и о близком к линейному расположению атомов во фрагменте $H^{\delta-} \cdots H^{\delta+}$. Х. Малое количество кристаллографических данных для ДВС систем компенсируется многочисленными расчетными работами таких систем, которые в дополнение к структурным данным сообщают об электронных и колебательных характеристиках.

Рассмотренные результаты исследований, проведенных спектральными И кристаллографическими методами, обеспечивают достаточные доказательства образования ДВС комплексов, но и создают экспериментальные основы теоретических исследований структуры. Так, низкочастотные смещения и рост интенсивности v_{XH} и v_{MH} полос, наблюдаемых в ИК спектрах диводородно-связанных комплексов, предполагают удлинение и дополнительную поляризацию взаимодействующих М-Н и Н-Х связей. Изменения химических сдвигов в спектрах ЯМР ¹Н связаны с природой сдвига электронной плотности и ростом отрицательного заряда на гидридном лиганде, включенном в ДВС. Увеличение константы обменного взаимодействия тоже позволяет предполагать частичный перенос заряда от гидрида металла к донору протона.

1.2. Дегидрирование амин-боранов комплексами переходных металлов 9-10 групп.

В настоящее время многих исследователей привлекают гидридные соединения бора RR'NH·BH₃, где R, R' = H или алкил, как исходные соединения для создания новых материалов и систем для хранения водорода [41]. Первый представитель этого класса соединений – боразан (NH₃BH₃) был синтезирован в 1923 году, однако, долгое время рассматривался учеными как B_2H_6 ·2NH₃ [42, 43]. Строение мономера состава NH₃BH₃ установлено только в 1955 году методом порошковой рентгенограммы [44]. Боразан NH₃BH₃ является наиболее перспективным соединением для создания эффективной системы хранения водорода, так как содержит в своем составе 19,6 массовых % водорода [45]. Алкиламин-замещенные производные боразана находят различные применения в качестве селективных восстановителей и гидроборирующих агентов, однако также могут использоваться в качестве источника водорода.

Благодаря наличию межмолекулярных диводородных связей между молекулами амин-боранов (АБ) [46], данные соединения способны к выделению H₂ за счет переноса протона вдоль NH····HB связей. Многими исследователями показано, что при нагревании выше 120 °C боразан NH₃BH₃ претерпевает термическое разложение, сопровождающееся выделением водорода и неселективным образованием продуктов полимеризации (боразинов и полиборазиленов) [47, 48]. Также амин-бораны активно изучаются в качестве исходных реагентов для создания материалов на основе BN-сеток. В частности, полиаминобораны, изоэлектронные широко применяемым в химической технологии полиолефинам, имеют потенциальное применение в качестве пьезоэлектриков или прекурсоров для BN-керамики или белого графена [49].

Процесс дегидрирования амин-боранов требует больших затрат энергии и его трудно контролировать, поэтому в настоящее время наиболее эффективным методом проведения реакции является катализ комплексами переходных металлов.

1.2.1. Взаимодействие амин-боранов с комплексами переходных металлов.

В упрощенном виде схему образования наблюдаемых продуктов реакции дегидрирования амин-боранов металлокомплексами можно представить, как показано на Схема 3. Боразан NH₃BH₃ может выделить более 2 эквив. водорода с образованием полиборазиленов, а также часто нерастворимых олигомерных и полимерных цепочек. Моноалкил-замещенные (первичные) амин-бораны $RNH_2 \cdot BH_3 \cdot Moryt$ образовывать полиаминобораны $[RNH \cdot BH_2]_n$ при потере 1 эквив. водорода и боразины $[RN \cdot BH]_3$ при потере двух эквив. водорода. В результате дегидрирования бис-алкил-замещенных (вторичных) амин-боранов $R_2NH \cdot BH_3$ образуется циклическая димерная частица $[R_2N \cdot BH_2]_2$.

Схема 3

Лучшей моделью для изучения каталитического дегидрирования является диметиламин-боран Me₂NH·BH₃ (ДМАБ), так как в процессе реакции образуются растворимые и легко идентифицируемые интермедиаты. Наиболее часто в растворе наблюдаются аминоборан Me₂N=BH₂, который называют неорганическим аналогом этилена, и линейный диборазан H₃B·NMe₂BH₂·NMe₂H. Обе частицы обладают высокой реакционной способностью и быстро превращаются в стабильный циклический димер [Me₂N·BH₂]₂ (Схема 4).

Схема 4

Первое дегидрирование вторичного амин-борана с участием переходного металла было осуществлено Робертсом в 1989 году при помощи палладия на угле [50]. Дегидрирование tBuMeNH·BH₃ в данной системе происходило с промежуточным образованием аминоборана tBuMeN=BH₂, который димеризовался в [tBuMeN·BH₂]₂. В 2001 г. Маннерс с сотрудниками показал [51], что комплекс Вилкинсона является эффективным катализатором дегидрирования ДМАБ, который в результате реакции превращается в циклический димер [Me₂N·BH₂]₂ (Схема 5).

Использование металлокомплексных катализаторов для гомогенного дегидрирования амин-боранов дает возможность управлять скоростью реакции, глубиной протекания процесса, а также понизить температуру выделения водорода, а также контролировать каталитические процессы, варьируя металлы или модифицируя лигандную сферу. Среди множества возможных комплексов переходных металлов, с точки зрения данной работы, особый интерес представляют комплексы, содержащие гидридный лиганд [52]. Действительно, широкий диапазон поляризации связи металлводород в гидридах металлов в сочетании с возможностью образовывать как классические полигидриды [L_xM(H)_y], так и комплексы с молекулярным водородом [L_xM(η²-H₂)_y], позволяет создавать чрезвычайно эффективные катализаторы дегидрирования аминборанов [53].

Гомогенные катализаторы дегидрирования могут работать по внутрисферному или внешнесферному механизму [54]. Внешнесферный механизм подразумевает дегидрирование амин-боранов без непосредственной координации к металлическому центру. Напротив, внутрисферный механизм включает начальную координацию амин-борана к металлу с последующим разрывом ВН и NH связей амин-борана.

Механизм внутрисферного дегидрирования амин-боранов достаточно сложный и сильно зависит от выбранного катализатора. Большинство основополагающих работ в литературе описывают этот процесс как с экспериментальной, так и с теоретической точки зрения. Начальное взаимодействие амин-борана с комплексом металла может происходить посредством ВН₃-группы (активация связи В–Н), NH₃-группы (активация N-H связи) или же с двумя группами одновременно. Комплекс металла типа $[L^{\delta+}ML^{\delta-}]$ может иметь два функциональных центра: основный и кислотный. Основным центром (L^{δ-}) может быть любой лиганд, несущий частично отрицательный заряд, например, гидридный или хлоридный. Кислотным центром в комплексах переходных металлов чаще всего является сам металл, представляющий собой кислоту Льюиса, в тоже время возможна кислотная поляризация гидридного лиганда M⁸⁻-H⁸⁺ [6, 7]. Учитывая амин-боране, с ВН3-группой будут предпочтительно поляризацию связей В взаимодействовать кислотные центры, а с RR'NH – основные (Схема 6).

Схема 6

Результатом взаимодействия NH-группы амин-борана с гидридным лигандом металлокомплеска является образование диводородной связи (ДВС) [55-57], последующее выделение молекулярного водорода приводит к образованию амидного комплекса M-NH₂-BH₃ (Схема 7, слева). В то же время, при другой поляризации связи металл-гидрид – M^{δ} -H^{$\delta+$} [6, 7], может образоваться и борильный комплекс M-BH₂-NH₃ (Схема 7, справа). Последующее элиминирование водорода с BH или NH связи приводит к образованию аминоборана BH₂=NH₂.

Схема 7

В координационно ненасыщенных гидридных комплексах взаимодействие аминборана с металлом может быть прямым, то есть путем комплексообразования по η^1 - или η^2 -типу (что классически определяется как σ -борановый комплекс). В σ -комплексе типа [L_nM-H₃B·NR₃] связь М–Н–В является трехцентровой двухэлектронной и реализуется за счет прямого донирования с σ -орбитали В-Н на свободную р-орбиталь металла. В свою очередь, комплекс с двумя мостиковыми ВН-группами (по η^2 -типу) характеризуется как комплекс с четырехцентровой четырехэлектронной связью. Предполагается, что подобные комплексы являются интермедиатами каталитического дегидрирования АБ. Наиболее широко известны комплексы Шимо с η^1 -координацией молекулы амин-борана, выделенные на таких металлах как хром, марганец, вольфрам и рутений, и комплексы Веллера с η^2 -координацией амин-борана на родии (Схема 8) [58]. Координация аминборанов на атоме металла аналогична координации ВН4⁻ в тетрагидроборатных комплексах.

M = Cr, W, Mn

Схема 8

С начала XXI века поиском высоко эффективной каталитической системы для дегидрирования амин-боранов занимаются различные группы исследователей по всему миру. Стало очевидным, что для контроля селективности и скорости реакции важно понимать по какому механизму протекает реакция, что невозможно без спектральных исследований и квантово-химических расчетов. Количество знаний, накопленных за почти два десятилетия, потрясает воображение, поэтому в данном литературном обзоре мы рассматриваем только комплексы переходных металлов 9 и 10 групп, выступающие в роли катализаторов дегидрирования АБ.

1.2.2. Комплексы 9 группы (Co, Rh, Ir).

Координационно-ненасыщенные 12- или 14-электронные комплексы родия широко изучались в реакциях с амин-боранами, поскольку продукты этих взаимодействий являются достаточно стабильными, могут быть выделены и охарактеризованы рентгеноструктурным анализом. Полученные структурные данные позволили определить тип взаимодействия между выбранным амин-бораном и металлическим центром и предложить механизмы дегидрирования амин-боранов. Тем не менее, примеров, когда гидриды родия являются непосредственно катализаторами дегидрирования амин-боранов не так много. Среди них особое значение имеет работа Веллера [59], где исследовано взаимодействие различные гидридов Rh(III) со стехиометрическими количествами различных амин-боранов (Схема 9). Полученные в результате σ-борановые комплексы были методами ЯМР-спектроскопии тшательно охарактеризованы И рентгеноструктурного анализа [59]. В координирующем растворителе комплексы $[RhH_2(P^iPr_3)_2(L)_2][BAr^F_4]$ (L = растворитель) образуют аддукты 1:1 с Me₃N·BH₃ и (BH₂-NMe₂)₂, соответственно.

Схема 9

В 2013 году комплекс родия RhH₂Cl(PCy₃)₂, предположительно существующий в растворе в виде димера с хлоридными мостиками, был использован для изучения дегидрировании Me₂NH·BH₃ при комнатной температуре [60]. Исследования показали, что в присутствии 2 мольн. % катализатора ДМАБ переходит в [Me₂N·BH₂]₂ с TOF = 28 ч^{-1} . Эксперименты с дейтериевой меткой (кинетический изотопный эффект) позволили определить, что скорость лимитирующей стадией каталитической реакции является активация N-H протона. Гидридный комплекс с более объемными и сигма-донорными NHC-лигандами Rh(IMes)₂H₂Cl [IMes = N,N-бис(2,4,6-триметилфенил)-имидазол-2-илиден] взаимодействует с различными амин-боранами после удаления хлора в результате добавления Na[BAr^F₄] [61]. Для дизамещенных амин-боранов (R₂NH·BH₃, R = *i*Pr, Cy) образующийся продукт содержит мономер частично дегидрированного амин-борана, в то

время как для монозамещенных ($RNH_2 \cdot BH_3$, R = tBu) происходит координация свободного амин-борана к родию [62].

Координационно-ненасыщенные комплексы родия(I), не содержащие гидридный лиганд, показали высокую эффективность в реакции дегидрирования некоторых аминборанов в мягких условиях [63]. Взаимодействие $[Rh(PiBu_3)_2][BAr^F_4]$ (Ar^F = 3,5-(CF₃)₂C₆H₃) с 2 эквив. ДМАБ при комнатной температуре приводит к координации аминборана к атому родия, затем немедленно следует его дегидриродвание с образованием (NMe₂-BH₂)₂. Конечный металлсодержащий продукт представляет собой дигидрид Rh(III) [RhH₂(P*i*Bu₃)₂(η^2 -ДМАБ)] [BAr^F₄]. В открытой системе в токе аргона (5 мольн. % катализатора, T = 25 °C) значение ТОF составило 34 ч⁻¹.

Аналогичные катионные комплексы Rh(I) $[Rh(PtBuiBu_2)_2][BAr^{F_4}]$ [64]. $[Rh(PCy_3)_2][BAr^{F_4}]$ [65] $\{Rh(\eta^6$ и полусэндвичевые катионные комплексы $C_{6}H_{5}F)[P(Cyp)_{2}(\eta^{2}-C_{5}H_{7})]][BAr^{F_{4}}]$ (Cyp = циклопентил) [66]. $[Rh(\eta^{6}-1,2 C_6H_4F_2$)(P*i*Bu₃)₂][BAr^F₄] [67], и {Rh(η^6 -C₆H₅F)[Ph₂P(CH₂)_nPPh₂]}[BAr^F₄] (n = 2-5) [68, 69] также катализируют дегидрирование амин-боранов (Me₂NH·BH₃, MeNH₂·BH₃). Во всех случаях были выделены и структурно охарактеризованы продукты и интермедиаты реакции. Среди вышеперечисленных катионных комплексов наиболее эффективным катализатором дегидрирования ДМАБ оказался $\{Rh(\eta^6-C_6H_5F)[Ph_2P(CH_2)_3PPh_2]\}[BAr^F_4]$ При загрузке 0.2 мольн. % катализатора (298 K, CH₂Cl₂) значение TOF составило 1250 ч⁻¹ [69].

Детальное исследование механизма каталитического дегидрирования ДМАБ в присутствии [Rh(PCy₃)₂]⁺ [65] показало, что в процессе катализа (5 мольн. % [Rh], TOF = 10 ч⁻¹) в качестве интермедиатов образуются мономерный аминоборан и линейный диборазан. Добавление 2 эквив. ДМАБ к [Rh(PCy₃)₂]⁺ приводило к образованию σ-комплекса [Rh^I(PCy₃)₂(η^2 -Me₂NH-BH₃)][BAr^F₄], который затем быстро трансформировался в дигидрид [Rh^{III}(PCy₃)₂(H)₂(η^2 -Me₂NH-BH₃)][BAr^F₄] с одновременным отрывом Me₂N=BH₂ (Схема 10). Этот комплекс не теряет водород, так как активная каталитическая частица представляет собой комплекс родия(III), не изменяющий степень окисления в процессе дегидрирования.

Схема 10

Однако, при взаимодействии (Me₂N-BH₂)₂ с комплеком Rh(III) [Rh(PCy₃)₂(H)₂(η^2 -Me₂NH-BH₃)][BAr^F₄] может произойти восстановительное элиминирование H₂ с образованием каталитически активного комплекса Rh(I) (Схема 11), т.е. в данной системе может происходить автокатализ [65]. Дегидрирование осуществляется в нескольких циклах, как без окисления Rh(III)/Rh(III) (медленно), так и с изменением степени окисления Rh(I)/Rh(III) (быстро).

Схема 11

Механизм каталитической реакции, предложенный авторами [65] на основании проведенной работы, состоит, состоящий из следующих частей (Схема 12): (*i*) дегидрирование ДМАБ с изменением и (*ii*) без изменения степени окисления катализатора, (*iii*) образование и разложение линейного диборазана $H_3B\cdot NMe_2$ -BH₂·NMe₂H, (*iv*) циклизация линейного диборазана и (*v*) димеризация аминоборана Me₂N=BH₂ с образованием продукта (Me₂N-BH₂)₂. Авторы утверждали, что этот цикл (или его части) универсален и применим к различным гомогенным системам.

Схема 12

Реакция дегидрополимеризации MeNH₂·BH₃ с образованием (MeNH·BH₂)_n недавно описана Веллером, где использовали родиевые катализаторы – нейтральный Rh(κ^3 –P,O,P–Xantphos–ⁱPr)H и катионный [Rh(κ^3 –P,O,P–Xantphos–iPr)(H)₂(η^1 –H₃B·NMe₃)][BAr^F₄]. Кинетика выделения водорода показала значение TOF достигающее 1500 ч⁻¹, а скорость-определяющей стадией является активация NH-связи. Для реакции дегидрополимеризации авторами предлагается механизм, в котором нейтральные

гидриды, образованные в результате гидридного переноса в катионном комплексе, являются активными каталитическими частицами дегидрирования [70].

Cp*Rh^{III} n^{5} -1,2,3,4,5-Полусендвичевые комплексы родия (Cp* = пентаметилциклопентадиенил) 2,2'-бипиридиновым с лигандом катализирует дегидрирование ДМАБ, выделяя 1 эквив. водорода и (Me₂N-BH₂)₂ со значением TON = 2200. Каталитическая активность иридиевых аналогов этого комплекса оказалась намного ниже. Изучение механизма реакции в стехиометрических условиях в квантовохимический расчет позволили предположить неинтенсивное участие фрагмента Ср * в качестве переносчика протона (Схема 13) [71].

Схема 13

Катализаторами дегидрирования являются и многие стабильные гидридные комплексы иридия. Так, Веллер и его коллеги исследовали активность катионного дигидрид-диводородного комплекса [IrH₂(η^2 -H₂)₂(PCy₃)₂][BAr^F₄], который является источником координацонно-ненасыщенного катиона [Ir(PCy₃)₂(H)₂]⁺. Использование этого комплекса в реакциях дегидрирования различных амин-боранов (Me₂NH·BH₃ [72], MeNH₂·BH₃ [73] и NH₃·BH₃ [74]) позволило найти и охарактеризовать основные интермедиаты и продукты. Взаимодействие [IrH₂(η^2 -H₂)₂(PCy₃)₂][BAr^F₄] с ДМАБ во фторбензоле [72] на первой стадии приводит к отрыву двух молекул водорода и координации одной молекулы ДМАБ к иридию по η^2 -типу с образованием σ -комплекса с двумя мостиковыми В-H связями (Схема 14). При комнатной температуре аминборановый фрагмент этого комплекса медленно теряет водород, и через 48 ч образуется аминоборановый комплекс [Ir(PCy₃)₂(H)₂(η^2 -H₂B=NMe₂)][BAr^F₄].

Механизм дегидрирования образовавшегося на первой стадии σ-комплекса [Ir(PCy₃)₂(H)₂(η²-H₃B·NMe₂H)][BAr^F₄] был предложен на основании квантово-химических расчетов с учетом последовательной активации B-H, отрыва H₂ от металла и активации N-H [72]. В отличие от ДМАБ, монозамещенный MeNH₂·BH₃ в процессе катализа олигомеризуется на металле с образованием линейного диборазана H₃B·NMeH-BH₂·NMeH₂ и соответствующего σ -комплекса [Ir(PCy₃)₂(H)₂(η^2 -H₃B·NMeH-BH₂·NMeH₂)][BAr^F₄] (Схема 15) [73]. В присутствии того же комплекса иридия боразан NH₃·BH₃ подвергается дополнительной олигомеризации, приводящей к выпадению из раствора нерастворимого полимерного осадка состава [NH₂BH₂]_n [74]. В процессе дегидрирования образуются различные комплексы иридия, содержащие олигомерные амин-борановые фрагменты Ir(PCy₃)₂(H)₂(η^2 -H₃B·(NH₂BH₂)_n·NH₃)][BAr^F₄] (n = 0-4), что подтверждено методом масс-спектроскопии [74].

Схема 15

Квантово-химический расчет [72], проведенный для модельной системы [Ir(PMe₃)₂(H)₂]⁺ и BH₃·NH₃ позволил предложить путь реакции исходя из *σ*-комплекса (Схема 16), включающий (i) начальное дегидрирование одной молекулы амин-борана, (ii) дегидрирование второй молекулы амин-борана и (*iii*) димеризацию аминоборана на металле. Стадия (i) имеет самый высокий энергетический барьер, a (iii) - самый низкий. Для монозамещенного MeNH₂·H₃B барьер последовательной олигомеризации существенно выше, что соответствует экспериментально наблюдаемой единственной стадии олигомеризации – димеризации. Для ДМАБ этот барьер оказался непреодолимо высоким благодаря имеющимся стерическим затруднениям. Роль ДВС в процессе выделения водорода авторами [70] практически не обсуждается, однако N-H···H-B взаимодействия представлены на предложенной ими схеме (Схема 16). Данные теоретического исследования продемонстрировали влияние стерического фактора в дегидрировании амин-боранов, а также указали на то, что взаимодействия N-H···H-B являются важными для снижения барьеров процесса дегидрирования [75].

Некоторая аналогия между алканами и амин-боранами позволила предположить [76], что широко известный на тот момент катализатор дегидрирования алканов – комплекс иридия с пинцетным лигандом (^{иви}РОСОР)IrH₂ – будет также эффективен в реакции дегидрирования амин-боранов. Действительно, добавление 0.5 мольн. % дигидрида иридия к раствору боразана в ТГФ приводило к выделению 1 эквивалента водорода за 15 минут при комнатной температуре с образованием циклического пентамера (NH₂-BH₂)₅ (Схема 17) [76]. Значение ТОF, полученное в присутствии 1 мольн. % катализатора, остаётся одним из самых высоких на сегодняшний день для данной реакции (1500 ч⁻¹). Присутствие молекулярной ртути в экспериментах не влияет на скорость процесса, указывая на то, что активные каталитические частицы находятся в растворе, т.е. на гомогенность каталитического процесса.

Несмотря на то, что пинцетные комплексы иридия катализируют дегидрирование как алканов, так и амин-боранов, DFT-расчеты для данной системы показали, что дегидрирование амин-боранов протекает совсем по другому механизму [77]. В отличие от дегидрирования алканов, где активной каталитической частицей является 14-электронный комплекс (^{rBu}POCOP)Ir, добавление амин-борана к (^{rBu}POCOP)IrH₂ приводит к их прямому взаимодействию (Схема 18). В-Н группа амин-борана координируется к 16-электронному (^{rBu}POCOP)IrH₂ с последующим концертным переносом гидрида на иридий и N-Н протона на гидридный лигнад металлокомплекса. В результате образуется тетрагидридный комплекс (^{rBu}POCOP)IrH₄, который выделяет водород и превращается вновь в дигидрид, замыкая каталитический цикл. Расчет также показал, что дегидрирование амин-боранов более энергетически выгодно, чем дегидрирование алканов, что согласуется с большей полярностью связей N-H и B-H в амин-боране по сравнению со связью C-H в алкане.

Схема 18

Дегидрирование боразана, катализируемое (^{*н*ви}РОСОР)ІгН₂, позволяет быстро генерировать водород, однако данная система имеет несколько существенных недостатков. Во-первых, на одну молекулу субстрата выделяется только 1 эквивалент водорода. Во-вторых, по мере протекания реакции, катализатор становится неактивным из-за образования боргидридного комплекса (^{*н*ви}РОСОР)ІгН₂(BH₃) (Схема 19) [78]. В-третьих, продукт реакции представляет собой нерастворимый осадок.

Схема 19

Использование частично замещенных амин-боранов (MeNH₂·BH₃ и Me₂NH·BH₃) позволяет обойти проблему растворимости, так как в результате дегидрирования комплексом (^{*t*Bu}POCOP)IrH₂ получались растворимые в ТГФ продукты [79]. В более поздних работах Маннерс показал, что при дегидрировании амин-боранов могут образовываться поли(аминобораны), которые формально являются аналогами полиолефинов [80], [81]. Поли(аминобораны) представляют собой новый класс неорганических полимеров, которые могут применяться в таких процессах, как синтез BN-сеток.

Комплекс на основе NHC-лиганда Ir(IMes)₂H₂Cl [IMes = N,N'-bis(2,4,6триметилфенил)-имидазол-2-илиден], аналогичный описанному выше комплексу родия, был испытан В каталитическом дегидрировании дизамещенных амин-боранов (Cy₂NH·BH₃ и iPr₂NH·BH₃) после активации и удаления хлора в результате обработки Na[BAr^F₄] [82]. При загрузке катализатора 2 мольн. % в ТГФ полная конверсия достигается за 12 часов. Показано, что в растворе катионная частица [Ir(IMes)₂H₂]⁺ связана как с исходным амин-бораном $R_2NH \cdot BH_3$, так и с дегидрированным $NR_2 = BH_2$ (Схема 20).

Еще один карбеновый комплекс $[IrH_2(I^{tBu})_2]^+$ ($I^{tBu} = 1,3$ -бис(третбутил)имидазол-2илиден; Схема 21), как и $[Ir(IMes)_2H_2]^+$ являющийся NHC-аналогом "классического" комплекса Веллера $[Ir(PCy_3)_2(H)_2]^+$, продемонстрировал высокую активность в дегидрировании амин-боранов в смеси $T\Gamma\Phi$ /вода (1:1) при T = 60 °C с загрузкой катализатора всего 0.001 мольн. % за 29 мин и с 0.0005 мольн. % за 52 мин (TON = 5×10⁵) [83]. Катализатор оказался чрезвычайно устойчивым к разложению, и позволил выделить из молекулы боразана NH₃·BH₃ до 3 эквив. водорода даже в присутствии кислорода воздуха.

В отличие от родиевых и иридиевых катализаторов комплексы кобальта не показали хороших результатов в дегидрировании амин-боранов. Одним из немногих примеров использования производных кобальта(I) в дегидрировании ДМАБ является пинцетный комплекс (PBP)Co(N₂) [84]. Комплекс с подобным PBP-пинцетным лигандом может обратимо присоединять водород по связи Co-B. Каталитическая реакция в присутствии 2 мольн. % комплекса в бензоле при 298 К проходит за 6 ч и приводит к полной конверсии в $(Me_2N-BH_2)_2$ (TOF = 1000 ч⁻¹). Квантово-химические расчеты показали, что в роли каталитически активной частицы выступает дигидрид кобальта(III) (PBP)CoH₂ (Схема 22) [85]. Однако попыток выделить и охарактеризовать такой комплекс предпринято не было.

Схема 22

В нашей лаборатории исследовано взаимодействие амин-боранов с гидридными комплексами кобальта с фосфиновыми лигандами (NP₃)CoH и (PP₃)CoH [86]. Оба комплекса оказались умеренно активны в дегидрировании AБ, хотя и с разной скоростью и эффективностью. Взаимодействие с AБ при 55°C в ТГФ даже в стехиометрическом соотношении (AБ : комплекс = 1:3) приводит к полной конверсии только через сутки. В ходе реакции для комплекса с NP₃-лигандом выделяется 2 эквив. водорода с образованием

боразина, а для комплекса с PP₃-лигандом - 1 эквив. H₂ и образуются длинноцепочечные поли(аминобораны) в качестве нерастворимых продуктов. Установлено, что на первом этапе взаимодействия AБ с (NP₃)CoH образуется бифуркатный диводородно-связанный комплекс, в котором имеется CoH···HN (Схема 23). Затем благодаря лабильности связи N– Co в комплексе (NP₃)CoH происходит её диссоциация и η^1 -координация BH группы по атому кобальта. При этом сохраняется внутримолекулярная диводородная связь d(CoH···HN) = 1.88 Å. Данный механизм предполагает одновременную активацию BH- и NH-связей, что приводит к выделению водорода и отщеплению аминоборана NH₂=BH₂.

Схема 23

1.2.3. Комплексы 10 группы (Ni, Pd, Pt).

Первый пример использования комплекса никеля для каталитического дегидрирования АБ опубликован в 2007 г. [87]. Добавление 10 эквив. АБ к карбеновому комплексу Ni(NHC)₂, который генерировали *in situ*, приводило к немедленному выделению водорода. При таком соотношении катализатор : субстрат и $T = 60^{\circ}C \text{ NH}_{3}BH_{3}$ более 2 водорода образованием полимерных выделяет эквив. с продуктов (полиборазиленов). Измерения кинетического изотопного эффекта показали, что на скорость-определяющей стадии происходит одновременный разрыв В-Н и N-Н связей. Недостатком данной системы является быстрое разложение катализатора, сопровождающееся высвобождением свободного NHC и NHC-BH₃ аддукта. Попытки компьютерного моделирования реакции включали рассмотрение возможных каталитических циклов с участием как Ni(NHC) комплексов, так и свободного карбена [88-90], однако их результаты лишь частично объясняют имеющиеся экспериментальные данные.

Немного позже был синтезирован парамагнитный олефиновый комплекс никеля(I) Ni(trop₂NH)(OOCCF₃), где (trop₂NH) = бис(5H-дибензо[a,d]циклогептен-5-ил)амин [91]. Этот комплекс (Схема 24) оказался чрезвычайно активным в реакции дегидрирования ДМАБ. При добавлении всего 0,3 мольн. % катализатора к раствору ДМАБ (ТГФ, 298 К) 1 эквив. водорода выделяется менее чем за 1 минуту. В спектрах ЯМР ¹Н реакционной смеси наблюдались гидридные интермедиаты, однако, их так и не удалось выделить.

Схема 24

Катионные плоско-квадратные комплексы палладия(II) [Pd(allyl)][BF4], [Pd(allyl)(2,4гексадиен)][BF4] и [Pd(MeCN)4][BF4]₂ также были протестированы в качестве катализаторов дегидрирования амин-боранов [92]. Среди этих комплексов наиболее эффективным оказался [Pd(allyl)][BF4], который позволил выделить из молекулы NH₃BH₃ 2 эквив. H₂ всего за 20 с при T = 25°C. Результаты экспериментов на дейтерированных аналогах показали, что активация связи B-H является скорость определяющей стадией. Согласно DFT-расчетам наиболее стабильным комплексом катализатора с NH₃BH₃ является σ -комплекс.

 $[(^{tBu}PCP)Pd(H_2O)]PF_6$ [^{tBu}PCP Пинцетный аквакомплекс паллалия 2.6-С₆Н₃(CH₂PtBu₂)₂] проявил умеренную активность в реакции дегидрирования АБ и ДМАБ в диоксане при 303 К, за 24 часа удалось выделить только 1 эквив. водорода [93]. При проведении реакции в присутствии 5-ти кратного избытка NH₃BH₃ при 190-230 К в спектрах ЯМР ³¹Р наблюдалось появление интермедиатной частицы, отнесенной авторами работы к комплексу с координированной молекулой амин-борана $[(^{tBu}PCP)Pd(\eta^{1}-$ HBH₂NH₃)]⁺. При температуре выше 230 К образовывался гидрид палладия (^{*i*Bu}PCP)PdH, который оказался неактивной формой катализатора. Квантово-химический расчет на Нмодели позволил предположить механизм дегидрирования амин-борана (Схема 25). Молекула амин-борана замещает H₂O-лиганд в катионном фрагменте [(^HPCP)Pd(H₂O)]⁺ с образованием η^1 -BH-связанного комплекса. Взаимодействие со второй молекулой аминборана происходит за счет диводородной связи B-H···H-N между двумя NH₃BH₃ [d(B- $H \cdots H - N$) = 1.83 Å]. В результате выделяется первый эквив. водорода с образованием координированного к металлу линейного димера BH₃NH₂-BH₂NH₃. Дальнейшее 32

внутримолекулярное взаимодействие приводит к выделению второй молекулы H₂ и образованию основного продукта - циклического димера (BH₂–NH₂)₂.

Схема 25

Ионный координационно ненасыщенный карбеновый комплекс платины(II) $[Pt(ItBu')(ItBu)][BAr^{F_4}]$ (Схема 26) представляет собой единственный пример использования металлорганического комплекса платины в реакции каталитического дегидрирования ДМАБ [94]. При загрузке катализатора 5 мольн. % полная конверсия наблюдается через несколько минут в растворе ТГФ при 298 К. Авторы предполагают, что реакция протекает через образование нейтрального гидрида платины [PtH(ItBu')(ItBu)] в результате гидридного переноса на металл от молекулы субстрата. Спектры ЯМР¹¹В показали наличие в смеси борониевого катиона [(NHMe₂)₂BH₂]⁺, который имеет две кислотные NH-группы. Гидрид платины предположительно протонируется этой частицей образованием нестабильного комплекса с молекулярным водородом $[Pt(n^2$ с H_2)(*ItBu'*)(*ItBu*)]⁺, который в дальнейшем теряет H_2 , регенерируя каталитически активную частицу катиона платины (Схема 26).

Таким образом, создано и изучено множество систем для каталитического дегидрирования амин-боранов, однако оптимального варианта с возможностью контроля реакции до сих пор не найдено [95]. Также в последнее время во многих работах подчеркивается необходимость более глубокого понимая механизмов реакций и протонгидридных взаимодействий, возникающих между комплексами переходных металлов и амин-боранами, для создания эффективных и безопасных систем для хранения водорода. С нашей точки зрения, в процессах дегидрирования аминборанов не менее важно понимание роли водородных и диводородных связей, являющихся первой стадией реакции переноса ионов водорода и активации Е-Н связей [96]. Поэтому исследования, посвященные изучению слабых взаимодействий с участием гидридных комплексов переходных металлов и поиску новых катализаторов дегидрирования, чрезвычайно актуальны.

2. Обсуждение результатов

2.1. Взаимодействие пинцетных комплексов иридия с кислотами и основаниями.

Для изучения межмолекулярных взаимодействий с участием гидридных комплексов переходных металлов и органических кислот, а также процессов координации оснований к металлическому центру с образованием Льюисовых комплексов нами были выбраны гидридохлоридные комплексы иридия с пинцетными лигандами (^{Bu}PCP)IrH(Cl) (I-1, tBu PCP(H) = 2,6-бис[(ди-*трет*-бутилфосфино)метил]бензол), (tBu PCP)IrH(Cl)(CO) (I-2) и tBu PCN(H) = 1-[3-[(ди-*трет*-бутилфосфино)метил]фенил]-1H- $(^{tBu}PCN)IrH(Cl)$ (**II-1**, пиразол)) (Схема 27). Согласно рентгеноструктурным исследованиям комплексы I-1 и II-1 имеют одинаковую квадратно-пирамидальную геометрию и близкие углы и длины связей (Рисунок 5, Таблица 1). Поскольку гидридохлориды иридия I-1 и II-1 являются 5координационными и имеют 16-ти электронную конфигурацию, они легко вступают в реакции присоединения, образуя новую координационную связь с дополнительным лигандом. Например, комплекс I-2 образуется с количественным выходом при продувании СО через раствор (^{tBu}PCP)IrH(Cl) (I-1). Методом РСА был охарактеризован только один изомер комплекса I-2, в котором карбонильный лиганд находится в *транс*положении к гидридному лиганду [97]. Спектральные характеристики (Таблица 2) комплексов с симметричным ^{*t*Bu}PCP лигандом (**I-1**, **I-2**) соответствуют литературным данным, а комплекс (^{tBu}PCN)IrHCl (I-2) был специально синтезирован и полностью охарактеризован [98] (Таблица 1, Таблица 2).

Схема 27

Рисунок 5. Строение комплексов I-1 [99] и II-1 по данным РСА.

	Связь	(^{tBu} PCP)IrH(Cl)	(^{tBu} PCN)IrH(Cl)	(^{tBu} PCP)IrH(Cl)(CO)
Расстояния, Å	Ir-H	1.603(10)	1.5(2)	
	Ir-Cl	2.4250(12)	2.448(6)	2.475
	Ir-C	2.014(4)	1.99(1)	2.051
	Ir-P(1)	2.3051(14)	2.256(4)	2.329
	Ir-P(2)	2.3048(14)	-	2.329
	Ir-N	-	2.07(1)	
Угол H-Ir-Cl		90(3) °	97.7 °	-
Угол C _{CO} -Ir-Cl				88.8 °
Угол Р-Іг-Х		164.27(4) °	161.9(4) °	162.9 °

Таблица 1. Основные структурные характеристики комплексов **I-1** [99] и **II-1** по данным РСИ.

Таблица 2. Ключевые спектральные характеристики комплексов I-1, II-1 и I-2.

	ИК, см ⁻¹	ЯМР, м.д.	УФ, нм
(^{tBu} PCP)IrH(Cl)	v _{IrCl} 274	δ _H -43	434, 485, 519
		δρ 67	
(^{tBu} PCN)IrH(Cl)	v _{IrCl} 261	δ _H -37.7 (C ₆ D ₆)	427, 480, 512
		δρ 56	
(^{tBu} PCP)IrH(Cl)(CO)	v _{IrH} 2165	δн -7.6	Нет полос
	v _{CO} 1995, 1999		
	v _{IrCl} 265		

2.2. Водородные связи (^{tBu}PCP)IrH(Cl), (PCN)IrH(Cl) и (^{tBu}PCP)IrH(Cl)(CO) с протонодонорами.

Для изучения протоноакцепторных свойств пяти- и шестикоординационных (^{*t*Bu}PCP)IrH(Cl) (^{*t*Bu}PCN)IrH(Cl) (**I-1**) гидридохлоридных комплексов (**II-1**) И (^{*н*ВиРСР)IrH(Cl)(CO) (**I-2**) и их способности к образованию водородных связей проведено} спектральное исследование их взаимодействия с протонодонорами. Данные соединения имеют несколько центров, потенциально способных образовывать водородные связи в качестве основания: гидридный лиганд, хлоридный лиганд, атом переходного металла, имеющий неподеленные пары электронов, и СО лиганд в комплексе I-2. Кроме этого, для координационно ненасыщенных соединений I-1 и II-1, существует возможность взаимодействовать с основными центрами молекул протонодоноров. В качестве протонодоноров (кислот) выбрали индол и фторированные спирты CF₃CH₂OH (TФЭ), (CF₃)₂CHOH (ГФИП) и (CF₃)₃COH (ПФТБ). Несмотря на наличие неподелённой электронной пары на гетероатоме (N, O) данных протонодоноров, они не координируются
к комплексам I-1 и II-1 с образованием шестикоординационных комплексов. Взаимодействие I-1, II-1, I-2 с кислотами приводит к образованию только водородносвязанных комплексов.

Об образовании водородных связей в ИК спектрах свидетельствует появление новых низкочастотных полос в области Δv_{XH} в присутствии избытков I-1, II-1, I-2 (Рисунок 6, Таблица 4) [100]. Значение величин смещения максимумов полос ($\Delta v_{XH} = v_{XH}^{cвяз} - v_{XH}^{cвоб}$) возрастает с увеличением силы протонодонора. В спектрах ЯМР ¹Н сигнал δ_{OH} спирта смещается в слабое поле в присутствии избытков I-1, II-1, I-2, что также соответствует критериям образования водородной связи [101]. Например, в смеси комплекса I-1 с ГФИП сигнал δ_{OH} спирта появляется на 4.27 м.д. при 290 К, уширяется и сдвигается в слабое поле ($\Delta \delta = 2.14$ м.д.) при охлаждении до 230 К, что свидетельствует о смещении равновесия в сторону образования ВС комплекса. Это подтверждает образование водородной связи между комплексом I-1 и ГФИП, однако не дает информацию о центре ее образования.

Рисунок 6. ИК спектр ГФИП (*c* = 0.01 M) в присутствии **I-1** (*c*(**I-1**) = 0.011 M), 190 - 290 K, CH₂Cl₂.

В спектрах ЯМР ¹Н раствора **I-1** в толуоле- d_8 в присутствии 1 эквив. ГФИП при 200 К наблюдается сдвиг гидридного резонанса (δ_{IrH}) в сильное поле (на -0.6 м.д.) (Таблица 3). Однако его минимум времени релаксации увеличился (**I-1**, $T_{1min} = 373$ мс; **I-1**…ГФИП, $T_{1min} = 407$ мс), в то время как критерием образования диводородной связи с гидридным лигандом является уменьшение времени релаксации T_{1min} гидридного сигнала [26, 101]. Для комплекса **II-1** в CD₂Cl₂ добавление ГФИП вообще не приводит к сдвигу гидридного резонанса ($\delta_{H} = -33.1$ м.д., T = 200 K), а T_{1min} также немного возрастает (**II-1**, $T_{1min} = 467.1$ мс; **II-1**…ГФИП, $T_{1min} = 484.5$ мс). В протонном спектре карбонильного комплекса **I-2** в избытке ГФИП также отсутствует сдвиг гидридного резонанса (Таблица 3), и минимум времени релаксации не изменяется (**I-2** и **I-2**…ГФИП, Т_{1min} = 441 мс). Подобное увеличение времени релаксации гидридного лиганда наблюдалось для комплексов Cp*Mo(PMe₃)₂(CO)H в результате образования классической водородной связи по другому центру [102]. В ИК спектре в области валентных колебаний v_{IrH} комплекса **I-2** также не наблюдается изменений. Следовательно, можно исключить участие гидридного лиганда в водородной связи.

Таблица 3. Ключевые ЯМР ¹Н спектральные характеристики для комплексов **I-1**, **II-1** и **I- 2** в присутствии ГФИП.

	I-1		II-1	II-1		I-2	
ГФИП	0	1 экв	0	1 экв	0	1 экв	
δ, м.д. (200 К)	-43.2	-43.8	-33.1	-33.1	-7.5	-7.5	
T_{1min} , MC	373	407	467.1	484.5	441	441	
T, K ^a	200	210	200	200	220	220	

Для установления природы протоноакцепторного центра во взаимодействии со спиртами были измерены ИК спектры в низкочастотной области для растворов I-1 и I-2 в присутствии ГФИП в толуоле (Рисунок 7). Валентные колебания v_{IrCl} наблюдаются в спектре при 278 и 273 см⁻¹ для I-1 и I-2, соответственно, а при добавлении ГФИП смещаются в низкочастотную область ($\Delta v_{IrCl} = -17$ и -11 см⁻¹ для I-1 и I-2), что соответствует критериям образования водородной связи по данному центру [100, 101]. Полученные результаты однозначно доказывают, что атом хлора вовлечен в образование водородной связи с протонодонорами.

Рисунок 7. ИК спектры комплексов **I-1** (^{*t*Bu}PCP)IrH(Cl) (*слева*) и **I-2** (^{*t*Bu}PCP)IrH(Cl)(CO) (*справа*) в присутствии ГФИП (1:1 и 1:10). Толуол, 298 К.

Наличие в комплексе (^{*IBu*}PCP)IrH(Cl)(CO) (**I-2**) карбонильного лиганда позволяет использовать соответствующую характеристическую полосу валентных колебаний (v_{CO}) в качестве спектральной метки. В ИК спектре исходного комплекса **I-2** в гексане наблюдается широкая полоса v_{CO} с максимумом 1995 см⁻¹ и с высокочастотным плечом.

Разделение этой полосы показало наличие второй менее интенсивной полосы при 2000 см⁻¹ (Рисунок 8), которая, вероятно, принадлежит второму изомеру комплекса **I-2** с экваториальной координацией СО-лиганда. Добавление эквимолярного количества спирта при 200 К сдвигает исходную полосу v_{CO} в высокочастотную область на 6-16 см⁻¹, причём величина смещения растёт с увеличением силы спирта (Рисунок 9). Подобное высокочастотное смещение является результатом образования водородно-связанных комплексов по другому осно́вному центру, то есть без участия СО-группы в водородной связи [100, 101]. В присутствии избытка спирта (10 эквив.) в интервале температур 300-270 К v_{CO} исходного **I-2** уменьшается и появляется высокочастотная полоса v_{CO} 2001 см⁻¹, которую мы относим к ВС-комплексу с одной молекулой ТФЭ. При охлаждении ниже 270 К растет еще одна высокочастотная полоса v_{CO} 2005 см⁻¹, отнесенная к водородно-связанному комплексу с двумя молекулами ТФЭ (Рисунок 10). Интересно, что при этом интенсивность полосы v_{CO} 2001 см⁻¹ не изменяется.

Рисунок 8. Разделение полос в ИК спектре комплекса **I-2** (^{*t*Bu}PCP)Ir(CO)H(Cl) (*c* = 0.0015 М, гексан, 200 К).

Рисунок 9. ИК спектры комплекса І-2 в присутствии спиртов (1:1). Гексан, 200 К.

Рисунок 10. ИК спектры комплекса I-2 (tBu PCP)Ir(CO)H(Cl) (c = 0.0015 M) и I-2 в присутствии ТФЭ (1:10). Гексан, 200 – 300 К.

Таким образом, полученные спектральные данные подтверждают отсутствие водородной связи с гидридным лигандом для комплексов I-1, II-1, I-2 и с СО-лигандом в комплексе I-2, и свидетельствуют, что центром образования водородной связи является хлоридный лиганд. Энтальпии образования водородной связи ($\Delta H^{\circ}_{\text{HB}}$), полученные методом Вант Гоффа из температурной зависимости констант образования для всех трех комплексов, очень близки (Таблица 4). Однако, значения $\Delta H^{\circ}_{\text{HB}}$, полученные из корреляции $\Delta H^{\circ}_{\text{HB}}/\Delta v_{\text{XH}}$, оказались значительно ниже, что может свидетельствовать о существовании более сложных равновесий.

Таблица 4. Величины смещений полос v_{XH} протонодоноров (Δv_{XH} , см⁻¹) и энтальпии образования (ΔH°_{HB} , ккал·моль⁻¹) для водородно-связанных комплексов I-1, II-1 и I-2 в CH₂Cl₂.

	спирт	$P_{\rm i}$	Δv_{XH} , cm ⁻¹	$\Delta H^{\circ}_{\mathrm{HB}}$, ^a	$\Delta H^{\circ}_{\rm HB},^{\rm b}$
I-1	индол	0.75	-224	-2.5	-4.2
	ΤΦЭ	0.89	-249	-2.7	-4.6
	ГФИП	1.05	-341	-3.6	-5.7
	ПФТБ	1.33	-395	-5.2	-6.4
I-2	ΤΦЭ	0.89	-267	-2.6	-4.9
	ГФИП	1.05	-350	-4.4	-5.6
	ПФТБ	1.33	-393	-5.0	-6.4
II-1	ΤΦЭ	0.89	-288	-1.7	-5.1
	ГФИП	1.05	-320	-2.6	-5.3

^а Значения, полученные методом Вант-Гоффа; ^b значения, рассчитанные по корреляционному уравнению $\Delta H^{\circ}_{HB} = -18 \cdot \Delta v_{XH} / \{720 + \Delta v_{XH}\}$ [20]

С целью изучения структуры и электронного строения образующихся водороднокомплексов была проведена оптимизация геометрии аллуктов связанных с фторированными спиртами методом DFT/M06¹ в газовой фазе на примере комплексов I-1 и I-2. Данный расчет показал, что возможно существование не только водородносвязанных комплексов с хлоридным лигандом комплексов I-1 и I-2, но и комплексов, в которых молекула спирта взаимодействует с металлированным бензольным кольцом (Рисунок 11, Таблица 5). Для комплексов с водородной связью по гидридному лиганду минимумы найдены не были. Энергия взаимодействия в газовой фазе достаточно высока, но отличается между водородно-связанными аддуктами с одним и тем же спиртом менее чем на 2.7 ккал моль-1 (Таблица 5). Водородно-связанные комплексы с атомом хлора являются энергетически наиболее выгодными, при этом связь Ir-Cl удлиняется (на 0.04-0.06 Å), а длина связи Ir-H во всех комплексах не изменяется (Таблица 5). Существование нескольких водородно-связанных комплексов, образование которых вызывает различные смещения полосы v_{OH}, объясняет наблюдаемую ИК спектральную картину в области v_{OH} и отсутствие сходимости между значениями энтальпии образования водородной связи, полученными разными методами (см. выше).

¹ Квантово-химические расчеты проведены с.н.с. лаборатории Гидридов металлов ИНЭОС РАН д.х.н. О.А.Филипповым

І-1--ТФЭ**-***і*

I-1…ТФЭ**-***іі*

Рисунок 11. Оптимизированные (DFT/M06) геометрии водородно-связанных комплексов между **I-1** и CF₃CH₂OH (ТФЭ). Атомы водорода PCP лиганда опущены. Ir – лазурный, P – оранжевый, Cl – зеленый, F – голубой; O – красный, C – серый, H – светло-серый.

Таблица 5. Геометрические параметры (длины связей, Å) и энергии взаимодействия (ΔE_{ZPE} , ккал·моль⁻¹), рассчитанные для водородно-связанных комплексов между **I-1** и фторированными спиртами.

Изомер	ΔE_{ZPE} ,	d(Ir-Cl) ^a	d(Ir-H) ^a	d(Cl····Ho)	$d(C \cdots H_O)$	О-Н…Ү	Δv_{OH}	Δv_{IrCl}
	ккал·моль-1							
І-1 …ТФЭ - і	-12.2	2.490	1.538	2.227		157.2 ^b	-205	-9
І-1 …ТФЭ -іі	-13.4	2.467	1.536		2.209	168.2 ^c	-153	-1
І-1 …ТФЭ -ііі	-12.0	2.464	1.536		2.367	163.1 ^c	-155	+3
І-1 …ТФЭ -і ν	-11.5	2.513	1.537	2.159		167.6 ^b	-271	-22
І-1 …ГФИП - <i>і</i>	-18.3	2.503	1.538	2.275		147.2 ^b	-203	-31
І-1 …ГФИП - іі	-19.5	2.466	1.536		2.274	151.8 ^c	-201	+2
І-1 …ГФИП - <i>ііі</i>	-16.8	2.453	1.535		2.209	172.1 ^c	-192	+6
І-1 …ГФИП - іv	-16.8	2.526	1.537	2.107		162.4 ^b	-340	-32

^а Для свободного комплекса **I-1** d(Ir-H) = 1.537 Å, d(Ir-Cl) = 2.469 Å; ^b Y = Cl; ^c Y = ε -C.

Хлоридный лиганд остается предпочтительным центром образования водородной связи для карбонильного комплекса **I-2** при взаимодействии с ГФИП. В этом случае возможно существование нескольких водородно-связанных структур для двух изомерных комплексов **I-2a** и **I-2b**, которые отличаются относительным расположением молекулы спирта. В каждом комплексе одновременно реализуются C-H…Cl и O-H…Cl взаимодействия; наиболее стабильные структуры для каждого изомера изображены на Рисунок 12. Для всех водородно-связанных комплексов с **I-1** и **I-2** расчет показал низкочастотный сдвиг полосы v_{Ir-Cl}, что соотносится с экспериментом.

Рисунок 12. Наиболее стабильные структуры водородно-связанных комплексов I-2…ГФИП.

Таким образом, впервые зафиксировано образование водородной связи для всех трех иридиевых гидридохлоридов (I-1, I-2, II-1) с фторированными спиртами и индолом. Установлено, что предпочтительным центром образования водородной связи является хлоридный лиганд.

2.3. Исследование взаимодействия комплексов иридия (^{tBu}PCP)IrH(Cl) и (^{tBu}PCN)IrH(Cl) с основаниями.

Благодаря наличию свободного координационного места 16-тиэлектронные комплексы иридия могут выступать в качестве кислоты Льюиса и присоединять молекулу основания, несущую неподелённую электронную пару. Ранее в нашей лаборатории был охарактеризован шестикоординационный комплекс, получающийся при взаимодействии (^{/Bu}PCP)IrH(Cl) (I-1) с пиридином [103]. Для сравнения стерической доступности и Льюисовой кислотности металлического центра в 16-тиэлектронных пятикоординационных комплексов I-1 и II-1 мы исследовали их взаимодействие с нитрилами и пиридинами методами ИК, ЯМР и УФ спектроскопии в комбинации с квантово-химическими расчетами.

При добавлении пиридина ¹⁵N к комплексу (^{*IBu*}PCN)IrHCl (**II-1**) в ЯМР ¹H спектре появляются два гидридных сигнала изомерных комплексов **II-3a** и **II-3b** (-23.5 м.д. и -24.7 м.д.) в соотношении 5:1. Отсутствие сигналов исходного гидрида при комнатной температуре свидетельствует о полном связывании. Интересно, что при охлаждении образца сигнал на -23.5 м.д. расщеплялся в псевдо-триплет в результате перекрывания двух дублетов с ²J_{N-H} ~ ²J_{P-H}, что свидетельствует о координации пиридина в аксиальное положение (*транс* к гидридному лиганду) (Рисунок 13, Таблица 6) [103-105]. В спектре ЯМР ¹H-¹⁵N HMBC при 220 К наблюдаются кросс-пики двух сигналов ¹⁵N (-221 и -233 м.д.) с соответствующими сигналами гидрида и *о*-протонов пиридина, что позволило сделать отнесение сигналов пиридина к изомерам **II-3a** и **II-3b**, соответственно (Схема 28).

Схема 28.

Рисунок 13. Спектры ЯМР ¹H (600 МГц, гидридная область) комплексов **II-3a** и **II-3b**, полученный после смешения **II-1** с эквимолярным количеством ¹⁵NC₅H₅. CD₂Cl₂, 220 и 290 К.

При добавлении при 290 К эквимолярного количества бензонитрила к раствору I-1 в CD₂Cl₂ в спектрах ЯМР ¹H и ³¹P{¹H} наблюдается исчезновение гидридного сигнала ($\delta_{\rm H}$ - 43.0) и фосфорного сигнала ($\delta_{\rm P}$ 66.9) исходного комплекса. При охлаждении до 270 К в протонном спектре появляется новый триплет -21.96 м.д. ($J_{\rm PH}$ = 14.1 Гц; I-5b), смещенный в область более слабого поля (Рисунок 14, слева). По мере понижения температуры появляется второй сигнал -19.8 м.д. (I-5a), который разрешается в триплет с константой ² $J_{\rm P-H}$ = 14.3 Гц и смещается в слабое поле до -19.61 м.д. при дальнейшем охлаждении (Рисунок 9). Интегрирование гидридных сигналов в этих условиях дает соотношение изомеров I-5a : I-5b = 13:1. Образование двух изомеров также подтверждается появлением при охлаждении двух новых синглетов в спектрах ЯМР ³¹P{¹H} ($\delta_{\rm P}$ 52.1 (I-5a) и $\delta_{\rm P}$ 59.5 м.д (I-5b)) (Рисунок 14, справа), поведение которых при изменении температуры аналогично поведению соответствующих гидридных сигналов в спектрах ЯМР ¹H. Изменение положения и формы (ширины) слабопольного гидридного и соответствующего фосфорного резонансов свидетельствует о быстром диссоциативном обмене в шкале времени ЯМР.

Аналогичная картина наблюдается при добавлении эквимолярного количества ацетонитрила к раствору I-1 в CD₂Cl₂ как при комнатной температуре, так и при

охлаждении. В спектрах ¹H и ³¹P{¹H} ЯМР при 230 К появляются новые сигналы двух изомерных комплексов I-4a (δ_{H} -20.45 и δ_{P} 51.9) и I-4b (δ_{H} -22.45 и δ_{P} 56.1).

Рисунок 14. Спектры ЯМР ¹Н (400 МГц, гидридная область; (*слева*)) и ³¹Р{¹H} (162 МГц, *справа*) при различных температурах комплексов (tBu PCP)IrH(Cl) с PhCN (**I-5a** и **I-5b**), полученных *in situ* в CD₂Cl₂.

В отличие от (^{*н*Ви}РСР)IгH(Cl) (**I-1**) связывание (^{*н*Ви}РСN)IгH(Cl) (**II-1**) с бензонитрилом является количественным уже при комнатной температуре, что согласуется с меньшей стерической нагруженностью PCN-лиганда. При добавлении одного эквивалента бензонитрила к раствору (^{*н*Ви}РСN)IгH(Cl) (**II-1**) в CD₂Cl₂ при 290 К в спектрах ЯМР ³¹P{¹H} исчезает сигнал исходного комплекса **II-1** и появляются два уширенных сигнала 50.4 и 53.5 м.д. (Рисунок 15, *справа*). В спектрах ¹Н появляются два новых гидридных сигнала: дублет и уширенный резонанс в более сильном поле, который разрешается при понижении температуры и смещается в слабое поле. Данное поведение гидридного резонанса комплекса **II-5a** свидетельствует о быстром диссоциативном обмене в шкале времени ЯМР при комнатной температуре. Ниже 220 К эти резонансы разрешаются в дублеты в соотношении 1:1 (-22.4 и -24.2 м.д.) с константами спин-спинового взаимодействия ²*J*_{PH} = 20.68 Гц для обоих дублетов (Рисунок 15).

Рисунок 15. Спектры ЯМР ¹Н (300 МГц, гидридная область; *слева*) и 31 Р{ 1 Н} (162 МГц, справа) при различных температурах II-5а и II-5b, полученных in situ в CD₂Cl₂.

Аналогичное положение гидридных и фосфорных сигналов и их поведение при изменении температуры наблюдалось для (^{'Bu}PCP)IrHCl(Py) [103] и (^{'Bu}PCN)IrHCl(Py). Это позволило сделать отнесение сигналов комплексов I-4 и I-5 к изомерам a и b. В комплексах I-4a, I-5a и II-5a нитрильный лиганд находится в аксиальном положении (транс-положении к гидридному лиганду), при этом хлор находится в одной плоскости с ^{*t*Bu}PCP-лигандом, а в комплексах **I-4b**, **I-5b** и **II-5b** нитрильный лиганд расположен экваториально (цис-положение относительно гидрида) (Схема 27). Полученные соотношения изомеров говорят о различной относительной стабильности комплексов с ^{tBu}PCP и ^{tBu}PCN лигандами (Таблица 6). При переходе от ^{tBu}PCP к ^{tBu}PCN увеличивается доля экваториального изомера, что соответствует разнице энергий двух изомеров, как показано в DFT-расчете (см. ниже).

Таблица 6. ЯМР-спектральн	ые характ	теристики (химические	сдвиги б	б в м.д.,]	КССВ	$J_{\rm PH}$ в
Гц) шестикоординационных и	комплекс	ов, 200 К.				

Комплекс		$^{1}\mathrm{H}$	³¹ P	a:b
(^{tBu} PCP)IrH(Cl)	I-1	$-43.40 \ (^2J_{\rm PH} = 12.8)$	66.70	
(^{tBu} PCP)IrHCl(MeCN)	I-4a	$-20.45 (^2 J_{\rm PH} = 14.3)$	51.9	20:1
	I-4b	$-22.45 \ (^2J_{\rm PH} = 14.3)$	56.1	
(tBuDCD)IrHCI(DhCN)	I-5a	$-19.67 (^2 J_{\rm PH} = 14.1)$	54.80	13:1
	I-5b	$-22.15 (^2 J_{\rm PH} = 14.1)$	55.72.	
(^{tBu} PCN)IrHCl	II-1	-39.9 (² <i>J</i> _{PH} =20.31)	56.1	
(tBuDCN)]rHCl(Dy)	II-3a	$-23.5(^{2}J_{\text{PH}}=22.01, ^{2}J_{\text{NH}}=21.64)$	-	5.1
	II-3b	$-24.7 \ (^2J_{\rm PH} = 20.91)$	-	5.1
	II-5a	$-22.4 \ (^2J_{\rm PH} = 20.68)$	50.4	1:1
	II-5b	$-24.2 \ (^2J_{\rm PH} = 20.68)$	53.5	

Комплексы I-1 и II-1 являются координационно ненасыщенными и имеют яркую красную и оранжевую окраску. Образование шестикоординационных комплексов с основаниями приводит к исчезновению окраски за счёт изменения электронных свойств комплексов. Благодаря этому процесс комплексообразования можно изучать методом УФвид. спектроскопии, используя в качестве спектральной метки полосы поглощения исходных пятикоординационных комплексов. Анализ УФ-вид. спектров показал присутствие трех широких перекрывающихся полос с $\lambda_{max} = 434$, 485 и 519 нм для I-1 и $\lambda_{\text{max}} = 427, 480$ и 512 нм для II-1. Атом металла в комплексах I-1 и II-1 характеризуется d⁶ электронной конфигурацией и имеет три неподеленные пары электронов на d-орбиталях, а также одну вакантную d-орбиталь. Наблюдаемое в УФ-видимом спектре поглощение в области 450-500 нм связано с d-d* переходом, при этом очевидно, что наличие трех полос связано с возможностью таких переходов с участием каждой из трех пар электронов. Из этого же следует природа наблюдаемого исчезновения полосы при комплексообразовании с основаниями, имеющими неподеленную электронную пару, - в образующемся 18электронном комплексе (PCX)IrH(Cl)(L) отсутствуют вакантные d-орбитали И соответствующий переход не реализуется.

При добавлении 1 экв. основания к раствору (^{tBu}PCP)IrH(Cl) (**I-1**) или (^{tBu}PCN)IrH(Cl) (II-1) в CH₂Cl₂ при комнатной температуре наблюдается падение интенсивности суммарной полосы исходного комплекса (см., например, Рисунок 16 для смеси І-1 с ацетонитрилом). Понижение температуры приводит к смещению равновесия в сторону шестикоординационных комплексов И. соответственно, исчезновению полосы поглощения. Температура, при которой наблюдается количественное образование шестикоординационных комплексов зависит как от природы исходного гидридохлорида, так и от основания. Добавление PhCN к гидриду I-1 приводит к количественному образованию комплексов I-5a и I-5b при 250 К, в то время как взаимодействие PhCN с гидридом II-1 приводит к полному исчезновению полосы поглощения в УФ-спектре уже при комнатной температуре.

Интегрирование гидридных сигналов двух изомеров в спектрах ЯМР ¹Н дает отношение их концентраций в растворе. Благодаря этому, определив количество прореагировавшего исходного комплекса из УФ-видимых спектров, можно рассчитать равновесные концентрации каждого из изомеров **a** и **b** в растворе. Предполагая, что реакции образования двух изомеров протекают независимо друг от друга, мы рассчитали константы образования K_f шестикоординационных комплексов (Таблица 7). Количественный анализ УФ-вид. спектров при различных температурах позволил определить Δ Н° и Δ S° для всех комплексов (Таблица 7).

48

Рисунок 16. УФ-вид. спектры комплекса (^{*t*Bu}PCP)IrH(Cl) (**I-1**, 290 K) и его смеси (1:1) с CH₃CN (при 290-190 K, шаг 10 K) в CH₂Cl₂, 1 = 0.1 см. с = 6.0 ммоль/л.

Таблица 7. Термодинамические параметры комплексообразования и константы образования *K_f* для комплексов **I-4** и **I-5**.

Комплекс	Изомер	ΔH°, ккал.моль ⁻¹	ΔS° , кал:моль ⁻¹ K ⁻¹	К ₂₉₀ ,	K ₁₉₀ ,
		KRUM MOMB		л.моль	лмоль
I-5	a	-16.8 ± 0.8	-47 ± 3	192	$8.45 \cdot 10^{8}$
	b	-4.4 ± 0.3	-18 ± 1	272	$5.94 \cdot 10^{5}$
Ι /	a	-11.3 ± 0.4	-28 ± 2	160	$6.89 \cdot 10^{6}$
1-4	b	-8.1 ± 0.8	-20 ± 4	36	$7.51 \cdot 10^4$

В случае связывания 2-гидроксиметилпиридина (ГМП) с комплексом иридия I-1 гидридный резонанс исходного комплекса наблюдается в спектре ЯМР ¹Н при комнатной температуре одновременно с двумя новыми триплетами в более слабом поле $\delta_{\rm H}$ -27.71 (²*J*_P $_{\rm H}$ = 15.4 Гц, I-6a) и -19.78 (²*J*_{P-H} = 15.4 Гц, I-6b) (Рисунок 17, слева). Сигналы исходного комплекса исчезают при температуре ниже 273 K, при этом интенсивности гидридных сигналов комплексов I-6a и I-6b увеличиваются и немного смещаются, изменяя свое положение на $\Delta\delta$ -0.08 (I-6a) и 0.18 (I-6b) между 293 и 220 К. Соотношение гидридных сигналов I-6a и I-6b изменяется от 1.6:1 до 1.9:1 при понижении температуры от 273 до 220 К. Поведение сигналов в спектрах ЯМР ³¹Р ($\delta_{\rm P}$ 66.9, 55.5 и 53.7 при 293 К) аналогично поведению гидридных сигналов, что позволяет сделать их отнесение. Сигнал $\delta_{\rm P}$ 66.9 м.д. исходного комплекса исчезает при охлаждении, а сигналы $\delta_{\rm P}$ 55.5 (I-6a) и 53.7 (I-6b) смещаются в сильное поле на $\Delta\delta$ -1.03 и -0.61, соответственно (Рисунок 17, справа). По

аналогии с нитрильными комплексами мы предположили, что в **I-6a** ГМП координирован в аксиальное положение, а в **I-6b** ГМП в экваториальное (Схема 29).

Рисунок 17. Спектры ЯМР ¹Н (400 МГц, гидридная область; слева) и ³¹Р (162 МГц, справа) при различных температурах, демонстрирующие характеристичные сигналы комплексов **I-6a** и **I-6b**, полученных *in situ* при добавлении эквимолярного количества ГМП к (tBu PCP)IrH(Cl). CD₂Cl₂, 220-293 К.

Изменения в ИК спектрах в области валентных колебаний пиридинового кольца также подтверждают координацию пиридина к атому иридия. Интенсивность полос валентных колебаний CN свободной молекулы ГМП $v_{CN} = 1597$ и 1572 см⁻¹ уменьшается при добавлении (^{*Bu*}PCP)IrH(CI). Одновременно с этим наблюдается появление новых полос $v_{CN} = 1605$ и 1569 см⁻¹, которые относятся к координированному ГМП (Рисунок 18). Интенсивность полос $v_{CN}^{cвя3}$ растет при понижении температуры, что свидетельствует о смещении равновесия в сторону образования комплексов. В ИК спектре в области валентных колебаний ОН групп свободного ГМП наблюдается две полосы $v_{OH}^{cвя3}_{cвя3}_{BHyTP} = 3408$ см⁻¹, которые относятся к ОН в свободной молекуле и ОН в молекуле связанной внутримолекулярной ОН···N водородной связью. При понижении температуры появляется новая низкочастотная полоса $v_{OH}^{cвя3}_{MCЖ} = 3167$ см⁻¹, соответствующая ОН группам связанным межмолекулярными водородными связями

(OH…N). В присутствии иридиевого комплекса **I-1** появляется новая полоса при 3620 см⁻¹, которая отнесена нами к колебанию v_{OH} свободной OH группы координированного ГМП (v_{OH} (**I-6**)^{своб}), а новые полосы 3405 и 3195 см⁻¹ – к валентным колебаниям OH-групп, связанных водородной связью в комплексе **I-6** (Рисунок 19).

Рисунок 18. ИК спектры в области колебаний пиридинового кольца молекулы ГМП (c = 0.1 M) и его смеси с (tBu PCP)IrH(Cl) (1:1). CH₂Cl₂, 190-290 K.

Рисунок 19. ИК спектры в области колебаний v_{OH} молекулы ГМП (c = 0.1 M) и его смеси с (^{*tBu*}PCP)IrH(Cl) (1:1). CH₂Cl₂, 190-290 К (слева). Разделение полос в спектре **I-1/ГМП** при 290К (справа).

Анализ соответствующих УФ-вид. спектров подтверждает слабое связывание ГМП с комплексом I-1 (Рисунок 20), давая при комнатной температуре константы образования K_f (I-6a) и K_f (I-6b) равные 110 и 62 M⁻¹, соответственно. Измерения УФ-вид. спектров при различных температурах позволили определить ΔH° (I-6a) = -8.4 ± 0.9 ккал·моль⁻¹ и ΔS° (I-6a) = -21 ± 4 кал·моль⁻¹·K⁻¹, ΔH° (I-6b) = -8.5 ± 0.9 ккал·моль⁻¹ и ΔS° (I-6b) = -20 ± 4 кал·моль⁻¹·K⁻¹. Высокие значения энтропии могут быть связаны с отталкиванием между *о*-гидроксиметильной группой и трет-бутилами, которое препятствует более плотной

координации атома азота к атому иридия, а также с диссоциацией внутри- и межмолекулярных водородных связей ОН···N в молекулах ГМП.

Рисунок 20. УФ-вид. спектры комплекса **I-1** (290 К) и его смеси (1:1) с ГМП (при 290-190 К, шаг 10 К) в CH₂Cl₂, l = 0.1 см. с = 0.006 М.

Квантово-химический анализ комплексов (^{IBu}PCX)IrH(Cl)(L). Методом DFT/M06 были оптимизированы структуры комплексов (^{IBu}PCP)IrH(Cl)(L) для L = CH₃CN, ГМП, пиридин (Py), CO. Основные расстояния (Iг-Z, Z = P, C, Cl) в оптимизированных в газовой фазе структурах I-1 (^{IBu}PCP)IrH(Cl) и I-2 (^{IBu}PCP)IrH(Cl)(CO) аналогичны тем, которые были получены с помощью рентгеноструктурного анализа, и отличаются менее чем на 0,04 Å. Квантово-химический расчет показал, что ГМП имеет три конформера, наиболее стабильный из которых имеет внутримолекулярную водородную связь ОН…N. Однако в наиболее стабильной из оптимизированных структур комплекса I-6 молекула ГМП имеет иную конформацию, в которой ОН-группа отвернута от атома азота пиридинового кольца (Рисунок 21). Несимметричность ГМП приводит к возможности образования двух изомеров в каждой из координаций - аксиальной и экваториальной. Например, в комплексе I-6a CH₂OH-группа расположена вблизи аренового кольца, а хлоридный лиганд взаимодействует с *о*-протоном ГМП. Интересно, что в изомере I-6a' CH₂OH-группа развернута в сторону хлорида, однако её геометрия не позволяет образоваться внутримолекулярной водородной связи O-H…Cl.

Рисунок 21. М06 Оптимизированные геометрии четырех структур комплекса **I-6**, имеющих самую низкую энергию.

Наиболее предпочтительной для азотных оснований является координация в аксиальное положение (*транс*-положение к гидридному лиганду) (изомеры **a**, Таблица 8, Рисунок 21). Энергия второго стабильного изомера **b** с лигандом L в экваториальном положении (*цис*-положение к гидридному лиганду) (Рисунок 21) на 1.8-2.8 ккал·моль⁻¹ выше. Координация азотных оснований к атому иридия приводит к удлинению связи Ir-H (на 0.009-0.047 Å) и, в особенности, связи Ir-Cl (на 0.06-0.13 Å). Интересно, что это удлинение коррелирует с длиной связи Ir-N и электронодонорными свойствами лиганда L, но более прочное связывание (более короткое расстояние Ir-N) в изомерах **b** энергетически менее предпочтительно. Напротив, координация CO в аксиальное положение к гидриду существенно активирует связь Ir-H в изомере **2a** (Таблица 8). С другой стороны, удлинение связи Ir-Cl в **2b** сравнимо с удлинением в комплексах **3**, **4** и **6**, и этот изомер на 1.2 ккал·моль⁻¹ более выгоден в газовой фазе.

Таблица 8. Энергии комплексообразования в газовой фазе (ΔE_{ZPE} , ккал·моль⁻¹), относительные энергии ($\Delta \Delta E_{ZPE}$, ккал·моль⁻¹) и некоторые длины связей (d, в Å) для различных изомеров комплексов (^{*t*Bu}PCX)IrH(Cl)(L).

L	изомер	$\Delta E_{ZPE}{}^{\text{компл}}$	$\Delta\Delta E_{ZPE}$	d(Ir-H) ^a	d(Ir-Cl) ^a	d(Ir-N)
CH ₃ CN	I-4a	-8.6	0.0	1.570	2.530	2.160
	I-4b	-6.0	2.6	1.575	2.573	2.108
	II-4a	-9.5	0.0	1.562	2.506	2.238
	II-4b	-8.0	1.5	1.579	2.579	2.117
ГМП	I-6a	-7.3	0.0	1.546	2.541	2.506
	I-6a'	-6.5	0.7	1.552	2.555	2.458
	I-6b	-5.4	1.8	1.584	2.583	2.315
	I-6b'	-4.5	2.8	1.581	2.599	2.379
Ру	I-3a	-13.9	0.0	1.562	2.536	2.324
	I-3b	-11.2	2.7	1.577	2.576	2.249
СО	I-2a	-24.7	1.2	1.626	2.515	
	I-2b	-26.0	0.0	1.576	2.554	

^а Для комплекса I-1 d(Ir-H) = 1.537 Å, d(Ir-Cl) = 2.469 Å, II-1 d(Ir-H) = 1.542 Å, d(Ir-Cl) = 2.421 Å.

Таким образом, полученные результаты показывают, что даже относительно слабые взаимодействия растворителя (напр., ацетонитрила) с атомом металла могут изменять свойства гидрохлоридов иридия (I-1, II-1), имеющих тетрагонально-пирамидальную геометрию. Образование шестикоординационных Льюисовых комплексов (^{Bu}PCX) IrH(Cl)(L) протекает через предпочтительную координацию оснований (L = RCN, пиридины) в аксиальное положение к гидриду, что приводит к удлинению связи Ir-Cl, которое увеличивается по мере усиления связывания с L. Относительная стабильность и константы образования комплексов (^{tBu}PCP)IrHCl (I-1) с азотными основаниями увеличивается в ряду ГМП < MeCN < PhCN < Ру. Изменение Льюисовой кислотности и стерической доступности центрального атома иридия при замещении на несимметричный лиганд способствует увеличению прочности шестикоординационных комплексов и изменению относительной стабильности аксиального и экваториального изомеров. В комплексах I-1, II-1 и их шестикоординационных производных хлоридный лиганд служит протоноакцепторным центром и может образовывать водородные связи Cl…H-X. Полученные спектральные, структурные и энергетические характеристики комплексов I-1 и **II-1** с кислотами и основаниями были использованы при исследовании их взаимодействия с амин-боранами.

2.2. Исследование дегидрирования амин-боранов в присутствии комплексов (^{tBu}PCP)IrH(Cl) и (^{tBu}PCN)IrH(Cl).

В реакциях дегидрирования алканов и изоэлектронных им амин-боранов одними из самых эффективных катализаторов на сегодняшний день являются комплексы переходных металлов [106, 107]. Особое место занимают иридиевые комплексы с пинцетными лигандами, поскольку проявляют наиболее высокую каталитическую активность в подобных реакциях [108]. На основании имеющихся в литературе данных, мы предположили, что координационно ненасыщенные комплексы (^{*n*Bu}PCP)IrH(Cl) **I-1** и (^{*n*Bu}PCN)IrH(Cl) **II-2** будут катализировать выделение водорода из амин-боранов.

2.2.1. Изучение каталитической активности I-1 и II-1 в реакции дегидрирования амин-боранов.

Каталитическую активность комплексов (^{rBu}PCP)IrH(Cl) (I-1) и (^{rBu}PCN)IrH(Cl) (II-1) в реакции дегидрирования амин-боранов (NH₃BH₃, *t*BuNH₂·BH₃, Me₂NH·BH₃) определяли различными методами: спектрально – по падению интенсивности полос валентных колебаний ВН-групп исходного амин-борана в ИК спектрах; вольюметрически – измерение объема выделяющегося водорода в бюретке, заполненной водой, а также измеряя парциальное давление водорода с помощью прибора *Man On the Moon X102*. Данный прибор представляет собой закрытую систему, в которой проводится мониторинг изменения давления выделяющегося водорода от времени.

Кинетика реакции каталитического дегидрирования ДМАБ комплексами I-1 и II-1 была исследована в толуоле при комнатной температуре. Измерения объема выделяющегося водорода в присутствии комплекса (^{*IBu*}PCP)IrH(Cl) (I-1, 2 мольн. %) показали, что полная конверсия диметиламинборана достигается через 24 ч при комнатной температуре (TOF = 80 ч⁻¹). Интересно, что описанный в литературе (^{*IBu*}POCOP)IrH₂ дегидрирует ДМАБ более чем за 48 ч [109]. Кинетические кривые, полученные при различных загрузках катализатора I-1 (Рисунок 22), имеют две области, угол наклона которых отличается в два раза (эффективные константы скорости k_{eff} и k_{eff} и k_{eff} гавны $1.0 \cdot 10^{-4}$ и $4.9 \cdot 10^{-5}$ с⁻¹, соответственно). Найденные значения констант позволили оценить $\Delta G^{\ddagger_{298K}} \approx 23$ ккал·моль⁻¹.

55

Рисунок 22. Кинетические кривые зависимости объема H_2 , выделяющегося из ДМАБ, от времени в присутствии катализатора (tBu PCP)IrH(Cl) (I-1) в толуоле при 300 К. • - 2 моль %, • - 5 моль %, • - 10 моль % I-1.

При добавлении 2 мольн. % комплекса **II-1** к раствору Me₂NH·BH₃ (ДМАБ) в толуоле скорость реакции значительно увеличивается (TOF = 401 ч⁻¹) по сравнению с (^{/Bu}PCP)IrH(Cl), а замена растворителя на ТГФ способствует сокращению времени реакции (Таблица 9). Комплекс (^{/Bu}PCN)IrH(Cl) показал более высокую каталитическую активность в дегидрировании Me₂NH·BH₃ (ДМАБ), поэтому на его примере исследовали скорости реакции дегидрирования других амин-боранов. Дегидрирование *t*BuNH₂·BH₃ в присутствии 2 мольн. % **I-1** в толуоле протекает очень медленно (конверсия 15% за 1 ч), возможно, в связи с высокой степенью самоассоциации в неполярном растворителе. Использование более полярного ТГФ ускорило реакцию (конверсия *t*BuNH₂·BH₃ составила 32% за 1 ч). Для **II-1** дегидрирование *t*BuNH₂·BH₃ в толуоле и ТГФ в присутствии 2 мольн. % также идет медленно (Таблица 9). Каталитическое дегидрирование NH₃BH₃ в присутствии **II-1** в ТГФ показало высокие значения конверсии и TOF (Таблица 9).

Таблица 9. Данные по каталитическому дегидрированию различных амин-боранов в присутствии комплекса (^{*i*Bu}PCN)IrHCl **II-1**.

Субстрат	Растворитель	Метод	Мол. % II-1	TOF ^a	Время(ч)/Конверсия(%)		
Me ₂ NH·BH ₃	C ₆ H ₅ F	ИКь	10	58	3/60		
	Толуол	V ^c	10	96	1/66		
	Толуол	V ^c	2	401	1.7/62		
	ΤΓΦ	p ^d	3.5	665	0.5/100		
^t BuNH ₂ ·BH ₃	Толуол	V ^c	2		медленно		
	ΤΓΦ	V ^c	2	212	4/65		
NH ₃ BH ₃	ΤΓΦ	p ^d	2	580	2/60		
	ΤΓΦ	p ^d	3.5	358	1/100		

^а Значения ТОF определены для первых 2 минут; ^b ИК мониторинг падения полосы v_{BH} ; ^c измерение объема H₂; ^d измерение давления H₂ - прибор «Man on the Moon».

По окончании реакции дегидрирорвания ДМАБ комплексом (^{*i*Bu}PCP)IrH(Cl) (**I-1**) в толуоле-*d*₈ в спектре ЯМР ¹¹В наблюдаются сигналы двух продуктов: циклического диборазана (H₂B·NMe₂)₂ (**C**, t, δ_B 5.4, J_{BH} = 113.6 Гц) и (Me₂N)₂BH (**D**, d, δ_B 28.9, J_{BH} = 147.6 Гц) в соотношении 3:1. Более детальное исследование спектров, измеренных через 4 ч после начала реакции, показало образование аминоборана Me₂N=BH₂ (**A**, t, δ_B 38.2, J_{BH} = 130.0 Гц) и циклического диметиламинохлоргидроборана (Me₂N·BHCl)₂ (**B**, d, δ_B 6.5, J_{BH} = 130.0 Гц) в качестве интермедиатов реакции (Рисунок 23; Схема 30). Оба вещества в ходе реакции превращаются в циклический диборазан (H₂B·NMe₂)₂ (**C**), в то время как (Me₂N)₂BH (**D**) образуется в самом начале реакции и не претерпевает дальнейших превращений (Схема 30).

Схема 30.

Рисунок 23. Спектр ЯМР ¹¹В (128 МГц), измеренный через 4 ч после начала дегидрирования $Me_2NH\cdot BH_3$ (c = 0.28 M), в присутствии 5 мольн. % **I-1** в толуоле- d_8 при 290 K.

Мониторинг спектров ЯМР ¹¹В, измеряемых в процессе дегидрирования Me₂NH·BH₃ комплексом (tBu PCN)IrH(Cl) (**II-1**, 2 мольн. %) в толуоле- d_8 , показал образование тех же продуктов, что и при катализе комплексом (tBu PCP)IrH(Cl) (**I-1**). Однако состав интермедиатов реакции отличается (Схема 30). В присутствии **II-1** в спектре кроме молекулы Me₂N=BH₂ наблюдается сигнал линейного диборазана BH₃NMe₂-BH₂NHMe₂ (**E**, t, δ_B 1.5, J_{BH} = 113.5 Гц), что говорит о возможности димеризации молекулы ДМАБ на металле («on-metal») [54].

Мониторинг ИК спектров для смеси **II-1**/ДМАБ проводился при комнатной температуре в ароматических углеводородах (толуол, C₆H₅F) с загрузкой катализатора 10 мольн. %. В спектре наблюдалось одновременное уменьшение интенсивности полос v_{BH} (2368 см⁻¹) и v_{NH} (3284 см⁻¹) исходного амин-борана и рост полосы v_{BH} (2434 см⁻¹), отнесенной к линейным и циклическим продуктам дегидрирования (Рисунок 24). Константа скорости, рассчитанная из этих спектральных данных k(BH) = 0.0065 с⁻¹ хорошо согласуется с константой, полученной из вольюметрических измерений (k = 0.0068 с⁻¹) в аналогичных условиях. Этим значениям соответствует свободная энергия активации $\Delta G^{\ddagger_{298}}$ к равная 20.1 ккал·моль⁻¹.

Рисунок 24. ИК спектр ДМАБ (c = 0.1 М) в присутствии 10 мольн. % II-1 (*слева*) и соответствующие кинетические кривые (*справа*). C₆H₅F, 298K.

Дегидрирование NH₃BH₃ комплексом (^{'Bu}PCN)IrH(Cl) (II-1). Из полученного с помощью прибора *Man On the Moon X102* набора данных были выведены кинетические уравнения и рассчитаны константы скорости по начальным участкам. Определение порядка реакции по субстрату (NH₃BH₃) проводилось путем варьирования концентрации амин-борана (0.3, 0.15, 0.1 и 0.06 M), сохраняя при этом концентрацию катализатора постоянной ([II-1] = $3 \cdot 10^{-3}$ M). Аналогично определяли порядок реакции по катализатору ((^{^Bu}PCN)IrHCl), изменяя его загрузку ([II-1] = $3 \cdot 10^{-3}$, $5 \cdot 10^{-3}$, $8 \cdot 10^{-3}$, $1 \cdot 10^{-2}$ M) при постоянной концентрации NH₃BH₃ ([AB] = 0.15 M). Полученные линейные зависимости логарифма начальной скорости ln(v₀) от концентрации ln(c) (Рисунок 25) подтверждают первый порядок реакции как по амин-борану, так и по катализатору: $-d[AB]/dt = k_{obs}$ [AB] = k[II-1][AB].

Рисунок 25. Зависимость логарифма начальной скорости $ln(v_0)$ от концентрации аминборана ln([AB]) и катализатора ln([II-1]).

При комнатной температуре в присутствии 2 мольн. % (tBu PCN)IrH(Cl) (**II-1**) из NH₃BH₃ выделяется один эквивалент водорода. Константа скорости реакции *k* составляет 0.018 с⁻¹, а значение TOF, рассчитанное по начальному участку (2 мин), достигает 580 ч⁻¹. Повышение температуры до 313 К приводит к значительному увеличению скорости реакции (*k* = 0.119 с⁻¹ и TOF = 1380 ч⁻¹) (Рисунок 26). При этой температуре полная конверсия амин-борана достигается за 1.5 ч.

Рисунок 26. Кинетические кривые реакции дегидрирования NH₃BH₃ (2 мольн. % **II-1**) в ТГФ при разных температурах.

Для более глубокого понимания механизма процесса исследовали взаимодействие (IBu PCN)IrH(Cl) (**II-1**) с дейтерированными амин-боранами (NH₃BD₃, ND₃BH₃, ND₃BD₃). Измерения кинетического изотопного эффекта (КИЭ) показали уменьшение скорости реакции с N-дейтерированным [ND₃BH₃; $k_{\rm H}/k_{\rm D} = 2.9$] и B-дейтерированным [NH₃BD₃; $k_{\rm H}/k_{\rm D} = 1.6$] амин-боранами. В полностью дейтерированном соединении [ND₃BD₃, $k_{\rm H}/k_{\rm D} = 4.4$] значение КИЭ оказалось равным произведению ND- и BD-эффектов [КИЭ(ND₃BD₃) = КИЭ(NH₃BD₃)·КИЭ(ND₃BH₃) = 4.6]. Полученные значения КИЭ несколько больше опубликованных, например, для системы Ni(cod)₂/NHC [87] и свидетельствуют о том, что в скорость-определяющей стадии (стадиях) имеет место активация B–H и N–H связей.

Идентификация продуктов дегидрирования NH₃BH₃ проводилась методами ЯМР и ИК спектроскопии. В ходе реакции (в присутствии 5 мольн. % **II-1** в $T\Gamma\Phi$ -d₈) в спектре ЯМР ¹¹В было зафиксировано два растущих сигнала, отнесенных к продуктам реакции: В-(циклотриборазанил)-амин-борану (δ_B –7.0, –13.2 и -23.7 м.д.) и циклотриборазану (δ_B –13.2 м.д., Схема 31, Рисунок 27). В ИК спектре твердого нерастворимого осадка, образовавшегося в результате дегидрирования NH₃BH₃, наблюдались полосы валентных колебаний N-H, B-H и B-N групп, положение которых полностью совпадало с описанным в литературе для циклотриборазана [109]. Наличие этих полос подтверждает, что в

данных условиях из молекулы амин-борана выделяется один эквивалент водорода (Рисунок 28).

Рисунок 27. Спектр ЯМР ¹¹В (128 МГц), записанный в процессе дегидрирования NH_3BH_3 комплексом **II-1** (5 мольн. %) в $T\Gamma \Phi$ -*d*₈.

Рисунок 28. ИК спектр твердого нерастворимого продукта дегидрирования NH₃BH₃ в таблетке KBr.

Таким образом, комплексы иридия (^{*t*Bu}PCP)IrH(Cl) (**I-1**) и (^{*t*Bu}PCN)IrH(Cl) (**II-1**) проявляют каталитическую активность в реакции дегидрирования различных аминборанов. Комплекс (^{*t*Bu}PCN)IrH(Cl) показал большую каталитическую активность, что можно объяснить меньшей стерической нагруженностью ^{*t*Bu}PCN-лиганда и его более слабыми донорными свойствами.

Для определения структуры и устойчивости промежуточных соединений, для выявления способов активации различных связей (Ir-Cl, B-H, N-H и т.д.), а также для понимания роли межмолекулярных взаимодействий и механизма реакции в целом мы провели комплексное спектральное и теоретическое исследование взаимодействия катализатора и субстрата.

2.2.2. Взаимодействие (^{*t*Bu}PCP)IrHCl с ДМАБ в стехиометрических условиях.

Изучение особенностей взаимодействия комплексов (^{tBu}PCP)IrH(Cl) (I-1) и (^{rBu}PCN)IrH(Cl) (II-1) с ДМАБ проводилось различными спектральными методами. При добавлении 1 эквив. ДМАБ к **I-1** при 200 К в спектрах ЯМР ¹Н в толуоле- d_8 наблюдалось появление нового гидридного сигнала $\delta_{\rm H}$ -23.85 м.д. (Рисунок 29). При 210 К этот сигнал разрешается в квартет с константой ${}^{2}J_{\rm HH} = 13.6$ Гц, благодаря спин-спиновому взаимодействию Ir-H и Ir-H-В гидридов. При 220 К этот резонанс смещается в слабое поле и превращается в триплет с константой ${}^{2}J_{\rm PH} = 14.5$ Гц. Данный сигнал был отнесен к комплексу (^{*Bu*}PCP)IrH(Cl)(Me₂NH-BH₃) (**I-7**), в котором молекула ДМАБ координирована к атому иридия посредством мостиковой BH-группы (Схема 32). В спектре $\text{ЯМР}^{31}\text{P}^{1}\text{H}$ комплексу I-7 соответствует резонанс δ_P 45.7. При 240 К в протонном спектре наблюдалось появление сигнала $\delta_{\rm H}$ -9.17 м.д., принадлежащего хорошо известному тетрагидридному комплексу (^{*i*Bu}PCP)IrH₄ (**I-8**) [110]. Интегрирование показывает, что этот резонанс соответствует четырем протонам и имеет форму триплета ($^{2}J_{PH} = 9.8 \Gamma_{II}$), так как все атомы водорода эквивалентны. При дальнейшем повышении температуры в спектре ЯМР ¹Н появляется сигнал молекулярного водорода $\delta(H_2) = 4.5$ м.д. и растет сигнал тетрагидрида I-8.

Для подтверждения структуры интермедиата **I-7** был проведен аналогичный эксперимент с комплексом (tBu PCP)IrH₄ (**I-8**), который был предварительно получен из (tBu PCP)IrH(Cl) **I-1** по известной методике [111]. В данном эксперименте в спектре ЯМР ¹Н не было обнаружено никаких гидридных сигналов кроме **I-8**, при этом наблюдалось дегидрирование ДМАБ с образованием (H₂BNMe₂)₂ (**C**) и (Me₂N)₂BH (**D**) в соотношении 3:1 с той же скоростью, что и в случае первоначальной загрузки (tBu PCP)IrH(Cl) (**I-1**). Это доказывает, что тетрагидридный комплекс **I-8** является действительным интермедиатом

каталитической реакции, а комплекс (^{*t*Bu}PCP)IrH(Cl) (**I-1**) – прекатализатор процесса. Отсутствие замедления реакции при использовании (^{*t*Bu}PCP)IrH₄ (**I-8**), как катализатора, говорит о том, что стадия активации хлорида не является скорость лимитирующей.

Рисунок 29. Спектры ЯМР ¹Н (600 МГц), измеренные при различных температурах для (Bu PCP)IrH(Cl) (c = 0.02 М) и его смеси с ДМАБ (1:1) в толуоле-*d*₈.

Схема 32.

После добавления ДМАБ к раствору **I-1** в толуоле-*d*⁸ при низкой температуре исходный гидридный сигнал в спектре ЯМР ¹Н ($\delta_{\rm H}$ -42.67) смещается в слабое поле и уширяется (Рисунок 29). Подобные изменения мы наблюдали ранее в присутствии спиртов (раздел 1.1.), где образовывался водородно-связанный комплекс с

предпочтительным осно́вным центром – хлоридным лигандом [112]. Поэтому мы предположили, что образуется комплекс **I-1…ДМАБ**, в котором молекула ДМАБ связана водородной связью (N-H…Cl) с (tBu PCP)IrH(Cl) (Схема 32). В спектрах ЯМР ³¹Р при 220 К образование **I-1…ДМАБ** сопровождается смещением сигнала исходного комплекса ($\Delta \delta_P$ 67.5) в слабое поле (δ_P 60.8) и его уширением. Образование водородной связи также приводит к сильному смещению сигнала δ_H (NH) молекулы ДМАБ в слабое поле (Рисунок 30).

Рисунок 30. Спектры ЯМР ¹Н (600 МГц), измеренные при различных температурах для смеси (tBu PCP)IrH(Cl)/ДМАБ (1:1) в толуоле- d_8 .

Интегрирование всех сигналов в протонном спектре показало, что комплекс **I**-**1…ДМАБ** сосуществует с комплексом (Bu PCP)IrH(Cl)(Me₂NH-BH₃) (**I**-7), а их соотношение зависит от температуры (Рисунок 31), изменяясь от 1.5:1 при 200 К до 11:1 при 240 К. Полученные данные позволили нам определить термодинамические параметры для равновесия **I-1…ДМАБ** \leftrightarrow **I-7**: Δ H° = -4.5 ккал·моль⁻¹, Δ S° = -23.4 ккал·моль⁻¹·K⁻¹.

Рисунок 31. Температурная зависимость содержания (в мольных долях) комплексов I-1 + I-1···ДМАБ, I-7 и I-8 в ходе реакции (tBu PCP)IrH(Cl) (с = 0.02 M) с ДМАБ (1:1) в толуоле- d_8 .

При мониторинге реакции при 290 К было обнаружено, что после добавлении ДМАБ в спектре наблюдается только один уширенный сигнал, смещенный в слабое поле, однако в ходе реакции данный резонанс смещается в сторону исходного гидрида I-1 (Рисунок 32). Такое поведение сигнала объясняется наличием равновесия между исходным гидридом I-1, водородно-связанным комплексом I-1...ДМАБ и комплексом I-7 (Схема 32). Быстрый обмен в шкале времени ЯМР между водородно-связанным комплексом I-1...ДМАБ и гидридом I-1 приводит к смещению сигнала в слабое поле. По мере расходования ДМАБ в ходе реакции равновесие (Схема 32) смещается влево, и сигнал возвращается к исходному гидриду I-1. Наличие такого обмена и включение ДМАБ в равновесие с гидридом I-1 подтверждено методом спектроскопии ЯМР $^{1}H{^{11}B}$. При неселективной развязке наблюдается расщепление гидридного резонанса на два сигнала, в то время как селективная развязка на борном сигнале ДМАБ $\delta_{\rm B} = -12.8$ м.д. приводит к появлению только одного синглета с увеличенной интенсивностью (Рисунок 33).

Рисунок 32. Мониторинг реакции (tBu PCP)IrH(Cl) (I-1, c = 0.023 M) с ДМАБ (1:1) в толуоле- d_8 при 290 К методом спектроскопии ЯМР ¹Н.

Рисунок 33. Спектры ЯМР ¹Н эквимолярной смеси (^{*t*Bu}PCP)IrH(Cl)/ДМАБ, измеренные через 50 мин после начала реакции. Зеленый спектр – ¹H; синий – ¹H{¹¹B}; красный – селективная развязка на сигнале ¹¹В $\delta_{\rm B}$ = -12.8 м.д. *c* = 0.023 M, толуол-*d*₈, 290 K.

При проведении реакции в присутствии большого избытка амин-боранов (5 мольн.% **I-1;** ДМАБ, NH₃BH₃) через 1 ч после начала реакции в спектрах ЯМР ¹Н наблюдалось образование гидридного комплекса **I-9**, который был идентифицирован как (^{*i*Bu}PCP)IrH(μ^2 -H₂BH₂) [113]. Данный комплекс был независимо получен реакцией комплекса **I-1** с NaBH₄ и полностью охарактеризован.

В ИК спектрах эквимолярной смеси (^{*IBuPCP*})IrH(Cl)/ДМАБ в толуоле при температуре 190 К наблюдалось появление двух новых полос v_{BH} 2490 и 2087 см⁻¹, которые соответствуют полосам валентных колебаний терминальной и мостиковой BH групп в комплексе (^{*IBuPCP*})IrH(Cl)(Me₂NH-BH₃) **I-7** (Рисунок 34). Аналогичная картина наблюдалась для эквимолярной смеси (^{*IBuPCP*})IrH(Cl) с *I*BuNH₂·BH₃ (v_{BH}^{мост} 2108 см⁻¹ и v_{BH}^{терм} 2465 см⁻¹). Нагревание реакционной смеси приводит к одновременному уменьшению интенсивности полос v_{BH} комплекса **I-7**, возрастанию интенсивности полос, относящихся к продукту дегидрирования ДМАБ (v_{BH} 2426 см⁻¹) а также появлению полосы валентных колебаний связи Ir-H тетрагидрида иридия **I-8** (v_{IrH} 2070 см⁻¹). Исследования в дальней области ИК спектра показали постепенное исчезновение полосы валентных колебаний Ir-Cl исходного гидрида **I-1** (v_{IrCl} 276 см⁻¹) в присутствии ДМАБ при комнатной температуре. Интересно то, что Me₃N·BH₃ не вступает во взаимодействие с комплексом **I-1**, что свидетельствует о том, что наличие NH-протона в ДМАБ, который участвует в образовании водородной связи с атомом хлора, необходимо для протекания реакции.

Рисунок 34. ИК спектры (область колебаний v_{BH}) эквимолярной смеси (tBu PCP)IrH(Cl)/ДМАБ при различных температурах. Толуол, 190 – 290 K, с = 0.025 M.

2.2.3. Взаимодействие (^{*t*Bu}PCN)IrHCl с ДМАБ и NH₃BH₃ в стехиометрических условиях.

Взаимодействие комплекса (^{*i*Bu}PCN)IrH(Cl) (**II-1**) с амин-боранами было изучено методом ЯМР спектроскопии в широком диапазоне температур. Добавление 1 эквив. NH₃·BH₃ к комплексу **II-1** в TГФ-*d*₈ при 273 К приводит к появлению в протонном спектре нового широкого гидридного сигнала $\delta_{\rm H} = -23.4$ м.д. (Рисунок 35). В этих условиях в спектре ЯМР ³¹Р наблюдается широкий сигнал $\delta_{\rm P} = 55.3$ м.д., а исходный резонанс комплекса **II-1** ($\delta_{\rm P} = 49.8$ м.д.) отсутствует (Рисунок 35). Этот набор протонных и фосфорных сигналов можно отнести к комплексу (^{*i*Bu}PCN)IrH(Cl)(NH₃·BH₃) **II-7** (Схема 33). При нагревании до 323 К эти сигналы уширяются и сдвигаются в сторону исходного гидрохлорида, что связано с наличием равновесия между комплексами **II-7**, исходным **II-1** и водородно-связанным **II-1**···NH₃BH₃. В присутствии 1 эквив. ДМАБ при 273-323 К в спектрах ЯМР ¹H и ³¹P наблюдаются аналогичные сигналы (Схема 33).

II-1---R₂NH·BH₃ (R = H, Me)

Схема 33

Рисунок 35. Спектры ЯМР ¹Н и ³¹Р{¹H} (400 МГц, гидридная область) комплекса **II-1** и при добавлении NH₃BH₃ (1:1), ТГФ-*d*₈, 273-323К.

При комнатной температуре в присутствии NH₃BH₃ спустя 40 минут после начала реакции в гидридной области спектра ЯМР ¹Н появляется новый дублет $\delta_{\rm H}$ -21.3 м.д. (²J_{PH} = 18.6 Гц) и соответствующий дублет 58.24 м.д. (²J_{PH} = 17.4 Гц) в спектре ЯМР ³¹Р. Эти сигналы были отнесены к гидрид/боргидридному комплексу (**II-9**). Так же как и комплекс **I-9**, комплекс (^{*t*Bu}PCN)IrH(η^2 -H₂BH₂) синтезирован путем добавления избытка NaBH₄ (10 эквив.) к раствору **II-1** в ТГФ и впервые полностью охарактеризован [98] (Схема 34).

Схема 34.

Интересно, что в отличие от дегидрирования в присутствии I-1, комплекс II-9 является единственным интермедиатом, наблюдаемым в процессе реакции с BH₃NH₃ в каталитических условиях (5 мольн. % II-1 при 298 К). При смешении раствора II-1 и ДМАБ в эквимолярном соотношении сигналы комплекса II-9 появляются в ¹H и ³¹P спектрах только при нагревании выше 303 К. Так как комплекс II-9 образуется в реакционной смеси в результате разрыва связи В–N в амин-боране координированном к иридию, то появление его сигналов в ЯМР спектрах при меньших температурах по сравнению с ДМАБ свидетельствует о большей стабильности комплекса II-7 по сравнению с BH₃NH₃. Интересно, что для комплекса II-9, полученного *in situ*

добавлением 5 эквив. ДМАБ при комнатной температуре к **II-1** в ТГФ- d_8 , последующее охлаждение до 220 К позволяет наблюдать разрешение δ_{IrH} (**II-9**) в дублет дублетов с константами спин-спинового взаимодействия ${}^2J_{HP} = 18.1$ Гц и ${}^2J_{HH} = 11.0$ Гц (Рисунок 36).

Полученные результаты позволяют с уверенностью предположить, что взаимодействие **II-1** с BH₃NH₃ и ДМАБ протекает по одному и тому же механизму (Рисунок 11).

Рисунок 36. ЯМР ¹Н спектр (600 МГц) **II-1** в присутствии 5 эквив. ДМАБ в ТГФ-*d*₈, 210К.

Добавление ДМАБ к раствору **II-1** в $T\Gamma \Phi - d_8$ при 210 К позволяет замедлить реакцию дегидрирования и наблюдать образование водородно-связанного комплекса II-1...Ме₂NH·BH₃, Схема 33). Также как и для комплекса (^{tBu}PCP)IrH(Cl) I-1 об этом свидетельствует смещение гидридного сигнала в спектре ЯМР ^{1}H в слабое поле от δ_{H} – 33.5 до -32.63 м.д. Одновременно с этим в протонном спектре появляются два новых гидридных резонанса $\delta_{IrH} = -23.86$ м.д. (уширенный дублет) и $\delta_{IrH} = -25.55$ м.д. (дублет, $^{2}J_{\rm HP} = 20.91$ Гц), которым соответствуют два сигнала в области борных гидридов ($\delta - 6.5$ и -2.2 м.д.) (Рисунок 37). Можно предположить, что две пары сигналов, наблюдаемых для смеси **II-1**/ДМАБ, относятся к двум изомерным шестикоординационным комплексам **II-7a** и **II-7b**, где молекула ДМАБ координирована аксиально и экваториально, соответственно (Схема 35). Интересно, что подавление ¹¹В в протонном спектре приводит к увеличению интенсивности только основного Ir-H сигнала δ -23.86 комплекса II-7a, что возможно связано с различными *транс*-эффектами заместителей (Рисунок 38). Нагревание раствора приводит к исчезновению гидридного резонанса комплекса **II-7b**, и выше 270 К остаётся один уширенный резонанс ІІ-7а, который смещается в сильное поле. Мы относим этот сигнал к равновесной смеси комплексов II-7, II-1···Me₂NH·BH₃ и II-1 (Схема 33), которые находятся в быстром обмене в шкале времени ЯМР.

Рисунок 37. ¹Н ЯМР спектр (600 МГц) **II-1** в присутствии 1 эквив. ДМАБ в ТГФ-*d*₈ при 210 К.

Рисунок 38. Спектры ЯМР ¹Н (черный) и ¹Н{¹¹В} (красный) эквимолярной смеси **II**-1/ДМАБ (ТГФ- d_8 , 210 K).

Проведение подобного эксперимента в толуоле- d_8 приводит к появлению аналогичных сигналов δ_{IrH} двух изомерных комплексов **II-7a** и **II-7b** на -23.08 и -25.45 м.д. с константами спин-спинового взаимодействия ${}^2J_{HP} = 18.34$ Гц и ${}^2J_{HP} = 20.54$ Гц, соответственно. Соотношение этих изомеров остается всегда постоянным (8:1) и не зависит от используемого растворителя. Кроме того, повышение температуры до 273 К не влияет на соотношение и форму этих сигналов в отличие от наблюдаемого в ТГФ- d_8 . Это указывает на более высокую стабильность комплекса **II-7** в толуоле и коррелирует с данными ИК спектроскопии в аналогичных условиях.

Схема 35.

Измерения ИК спектров в широком диапазоне температур показали, что гидридхлорид иридия **II-1** также, как и комплекс **I-1** не взаимодействует с триметиламинбораном (NMe₃·BH₃). Добавление ДМАБ приводит к образованию новых межмолекулярных комплексов. В присутствии 1 эквив. ДМАБ в толуоле при 190 К в спектре наблюдается появление новых полос, соответствующих валентным колебаниям терминальных (v_{BH} 2450 см⁻¹) и мостиковых (v_{BH} 2013 см⁻¹) ВН-групп в комплексе **II-7** (Рисунок 39, слева). Мониторинг изменений в ИК спектрах при комнатной температуре показал образование комплекса **II-7** в первый момент времени и его постепенное исчезновение в течение 1.5 ч (Рисунок 39, справа). Это говорит о большей стабильности **II-7** по сравнению с ^{*и*Ви}РСР аналогом (**I-7**), который диссоциирует при температурах выше 220 К (Рисунок 34).

Рисунок 39. ИК спектр ДМАБ в присутствии 1 эквив. (^{*t*Bu}PCN)IrH(Cl) (**II-1**) при температурах 190-290 К в толуоле (*справа*) и изменения во времени при 298 К в тех же условиях (*слева*).

2.2.4. Теоретическое исследование механизма реакции.

Квантово-химический расчет механизма двух реакций был проведен методом DFT/M06 с оптимизацией геометрии всех структур в толуоле. Для производных комплекса I-1 с координированной молекулой ДМАБ было найдено несколько локальных минимумов с участием как NH…Cl, так и BH…Ir взаимодействий, однако в наиболее

стабильной структуре наблюдаются оба взаимодействия, что согласуется со структурой, предложенной на основании экспериментальных данных (комплекс І-7, Рисунок 40). В данном комплексе одновременная координация амин-борана к атому иридия и водородная связь молекулы ДМАБ с хлоридным лигандом N-H…Cl-Ir приводят к сильной активации связи Ir-Cl. Эта связь становится практически полностью диссоциированной с расстоянием Ir-Cl равным 2.629 Å в толуоле, что значительно больше суммы ковалентных радиусов и значительно длиннее, чем в исходном комплексе I-1 [d(Ir–Cl) =2.425 Å (PCA) [99], 2.469 Å (расч.)] или в соответствующих комплексах с азотными основаниями [2.542 Å (PCA) [103], 2.530-2.580 Å (расч.) (Таблица 8)]. Комплекс I-7 очень стабильный, его рассчитанная энтальпия образования в толуоле $\Delta H_{solv} = -10.0$ ккал·моль⁻¹. Для отрыва хлора требуется всего лишь 7.4 ккал моль⁻¹, при этом образуется комплекс **I-7**' (Рисунок 40; $\Delta H_{solv} = -2.6$ ккал·моль⁻¹ по отношению к реагентам). Для обоих комплексов **I-7** и **I-7**' найдены локальные минимумы на поверхности потенциальной энергии. Расчеты показали, что образование иридиевого тетрагидрида I-8 и циклического (Me₂N·BHCl)₂ предполагаемых интермедиатов реакции (^{*t*Bu}PCP)IrHCl с ДМАБ – практически энергетически нейтрально (-3.5 ккал/моль в шкале ΔH_{solv}), что подтверждает возможность их обратного превращения в исходный гидрид I-1 по окончании каталитического цикла. Таким образом, для активации (^{tBu}PCP)IrHCl и его включения в каталитический цикл требуются невысокие энергетические затраты.

Рисунок 40. Оптимизированные геометрии комплексов **I-7** (слева) и **I-7**[°] (справа) в толуоле. Длины связей указаны в Å. Атомы водорода РСР лиганда не показаны.

Расчет для комплекса (^{tBu}PCN)IrH(Cl) **II-1** подтвердил возможность координации молекулы ДМАБ как в аксиальное положение (η^1 –ВН *транс* к гидриду, **II-7а**; $\Delta G_{298K} = -2.2$ ккал·моль⁻¹), так и в экваториальное положение (η^1 –ВН *транс* к *unco*-углероду, **II-7b**; $\Delta G_{298K} = -1.9$ ккал·моль⁻¹) (Рисунок 41). Такое различие свободных энергий образования для двух изомеров согласуется с их экспериментально наблюдаемым соотношением 8:1.
Так же как в случае с (^{*tBu*}PCP)IrH(Cl) координация ДМАБ инициирует активацию прекатализатора (связь Ir-Cl удлиняется на 0.166 Å в **II-7b**), приводящую в конечном счете к образованию (^{*tBu*}PCN)IrH₄ (**II-8**) и (Me₂N·BHCl)₂ (Схема 32). Эта реакция практически энергетически нейтральна ($\Delta H^{\circ}_{solv} = -0.5$ ккал·моль⁻¹). В отличие от системы [(^{*tBu*}PCP)Ir], тетрагидридный комплекс (^{*tBu*}PCN)IrH₄ (**II-8**) является менее стабильным, чем (^{*tBu*}PCN)IrH₂(ДМАБ) (**II-10**) (Рисунок 44). Это объясняет почему в ходе реакции дегидрирования экспериментально не наблюдаются ди- или тетрагидриды.

Рисунок 41. Оптимизированные геометрии комплексов **II-7a** (слева) и **II-7b** (справа) в толуоле. Длины связей указаны в Å. Атомы водорода PCN лиганда не показаны.

ключевым интермедиатом Расчеты показали, что каталитического цикла дегидрирования ДМАБ в присутствии [(^{tBu}PCP)Ir]-производных (цикл *i*, Схема 36) является комплекс (^{Bu}PCP)IrH₂(ДМАБ) (I-10, Рисунок 42), структура которого аналогична структуре комплекса (^{tBu}PCP)IrH(Cl)(ДМАБ) I-7 (Рисунок 40). Координация молекулы ДМАБ приводит к активации BH и NH связей, которые удлиняются на 0.032 и 0.007 Å, соответственно. В то же время связь Ir-H, вовлеченная во взаимодействие с протоном NHгруппы (Ir-H···H-N), становится на 0.049 Å длиннее по сравнению со свободной связью Ir-Н в комплексе **I-10** (Рисунок 42). Одновременное наличие n^1 -ВН координации и диводородной связи N-H···H-Ir определяет шестичленную конфигурацию последующего переходного состояния (Рисунок 42). Расчеты показали, что в данной системе дегидрирование амин-борана протекает посредством концертного протон-гидридного переноса, однако, перенос протона вносит наибольший вклад. Переходное состояние имеет геометрию, подобную продукту реакции, с разорванной связью N-H и завершенным образованием H-H связи (Рисунок 42). Перенос протона от N-H группы к катализатору обычно считается скорость-определяющей стадией дегидрирования амин-боранов, однако в случае (^{tBu}PCP)IrH₂(ДМАБ) перенос протона происходит одновременно с разрывом связи В-Н. После происходит элиминирование молекулы NMe₂=BH₂ с образованием тетрагидрида **I-8**, а молекулярный водород заменяется другой молекулой субстрата (цикл *i*, Схема 36).

Рисунок 42. Оптимизированные геометрии комплекса **I-10** (*слева*) и переходное состояние для дегидрирования ДМАБ (*справа*) в толуоле.

Также как и для взаимодействия исходных хлорсодержащих комплексов с ДМАБ (Рисунок 41), оптимизация геометрии комплекса (^{*i*Bu}PCN)IrH₂(ДМАБ) (**II-10**) дает две изомерные структуры с близкой энергией: рассчитанная энтальпия (Δ H°) изомера с аксиальной координацией В-Н (**II-10a**) на 1.9 ккал·моль⁻¹ ниже, чем **II-10b** (2.7 ккал·моль⁻¹ в шкале Δ G_{298K}).

Рисунок 43. Оптимизированные геометрии комплекса II-10a (слева) и II-10b (справа) в толуоле.

Таким образом, замена одной CH₂P(*t*Bu)₂ группы в пинцетном лиганде пиразолом уменьшает стерические препятствия и создает возможность для образования двух изомеров комплексов с амин-боранами (Рисунок 41, Рисунок 43). Существование двух изомеров для ^{*t*Bu}PCN-комплексов делает возможными два пути дегидрирования (Схема 36). Аналогично [(tBu PCP)Ir] первый путь включает экваториальный комплекс **II-10b** и подразумевает концертный протон-гидридный перенос (*цикл i*, Схема 36). Второй путь подразумевает аксиальную координацию ДМАБ (**II-10a**) с последующим постадийным переносом протона и гидрида, что также приводит к образованию дигидридного комплекса (tBu PCN)IrH₂ и NMe₂=BH₂ (*цикл ii*, Схема 36). В этом случае последовательный перенос протона и гидрида создаёт возможность для димеризации амин-борана «на металле», что приводит к образованию линейного диборазана BH₃NMe₂-BH₂NHMe₂, наблюдавшемуся спектрально.

Схема 36. Предполагаемый механизм каталитического дегидрирования ДМАБ комплексами (^{*r*Bu}PCP)IrH₂ и (^{*r*Bu}PCN)IrH₂.

Для ^{*I*Bu}PCP производных образование комплекса **I**-10 из пятикоординационного дигидрида энергетически выгодно ($\Delta H_{solv} = -6.9 \text{ ккал} \cdot \text{моль}^{-1}$), однако затраты на отрыв H₂ от (^{*I*Bu}PCP)IrH₄ (**I**-8) примерно такие же, что в целом делает реакцию замещения водорода амин-бораном эндотермической в толуоле ($\Delta H_{solv} = 0.8 \text{ ккал} \cdot \text{моль}^{-1}$) (Рисунок 44). Энергетический барьер реакции составляет $\Delta H^{\neq}_{solv} = 15.4 \text{ ккал} \cdot \text{моль}^{-1}$, а свободная энергия переходного состояния $\Delta G^{\neq}_{solv} = 21.0 \text{ ккал} \cdot \text{моль}^{-1}$ относительно исходных реагентов (^{*I*Bu}PCP)IrH₄/ДМАБ (Рисунок 44), что близко к экспериментальным значениям $\Delta G^{\neq} \approx 23$ ккал · моль⁻¹, полученным из констант скорости *k*.

Расчет свободной энергии для [(^{rBu}PCN)Ir] аналогов (Рисунок 44) показал очень близкие значения энергии активации для экваториально (i) и аксиального (ii) путей реакции (Схема 36), что означает равную возможность реализации обоих процессов.

Энергия активации экваториального (i) пути существенно ниже, чем для аналогичного цикла с комплексом (^{tBu}PCP)IrH₂ (Рисунок 44), что коррелирует с более высокой каталитической активностью системы [(^{tBu}PCN)Ir].

Рисунок 44. Профиль потенциальной энергии каталитического дегидрирования (ΔG_{298K}, ккал·моль⁻¹) ДМАБ комплексом [(^{rBu}PCP)IrH₂] экваториальный путь (черный); комплексом [(^{rBu}PCN)IrH₂] экваториальный путь (красный) и аксиальный (синий) в толуоле (DFT/M06).

Зафиксированные экспериментально гидрид/боргидридные комплексы ((Bu PCP) **I-9** и (Bu PCN) **II-9**) являются продуктами диссоциация связи В-N, которая может произойти в комплексах [IrH₂(ДМАБ)] ((Bu PCP) **I-10** и (Bu PCN) **II-10**) (Схема 37). Процессу диссоциации В-N связи может способствовать присутствие нуклеофила, которым может быть ТГФ, следы воды и амина. Диметиламин Me₂NH, выделяющийся на этой стадии, взаимодействует с Me₂N=BH₂ с образованием продукта **B** ((Me₂N)₂BH), обнаруженного в спектрах ЯМР ¹¹В (Рисунок 23). Реакция образования комплексов [IrH(μ^2 -H₂BH₂)] (Схема 37) практически энергетически нейтральна (2.0 ккал/моль и 1.0 ккал/моль для **I-9** и **II-9**, соответственно), что позволяет катализатору в данной форме преобразовываться обратно в активный интермедиат [IrH₂(ДМАБ)]. Для каталитического цикла с участием РОСОР-аналога образующийся гидрид/боргидридный комплекс в активную форму не возвращался [76].

Схема 37.

Таким образом, мы показали, что атом металла в (^{*t*Bu}PCP)IrH(Cl) **I-1** и (^{*t*Bu}PCN)IrH(Cl) **II-1** ведет себя как кислота Льюиса при координации боргидрида, а хлоридный лиганд является предпочтительным осно́вным центром для образования водородной связи. Комплексы **I-1** и **II-1** являются прекатализаторами дегидрирования амин-боранов. Активность (^{*t*Bu}PCN)IrH(Cl) выше, чем его симметричного аналога (^{*t*Bu}PCP)IrH(Cl) и сравнима с (^{*t*Bu}POCOP)IrH₂ (POCOP = κ^3 -2,6-(OPR₂)₂C₆H₃). Для комплекса (^{*t*Bu}PCP)IrHCl оказалось, что замещение хлоридного лиганда на стадии активации прекатализатора протекает быстрее (с меньшим барьером), чем сам каталитический цикл.

Реакции **II-1** с ДМАБ протекает через шестикоординационные интермедиаты (^{/Bu}PCN)IrH(Cl)(R₂NH-BH₃) и (^{/Bu}PCN)IrH₂(R₂NH-BH₃), которые образуются в двух возможных изомерных конфигурациях из-за асимметричного строения и меньшей стерической загруженности комплекса с PCN-лигандом по сравнению с симметричными ^{/Bu}PCP и ^RPOCOP [114] аналогами. Изменение Льюисовой кислотности центрального атома иридия при замещении на несимметричный лиганд приводит к повышению стабильности полигидридных частиц, которые и не наблюдались экспериментально. Таким образом, введение менее стерически нагруженного и с более слабыми донорными свойствами пиразолатного фрагмента в пинцетный лиганд усиливает активность [(^{/Bu}PCN)Ir] комплексов в каталитическом дегидрировании амин-боранов и делает возможным протекание каталитической реакции по двум механизмам.

2.3. Взаимодействие пинцетного комплекса (^{*ви*}PCP)PdH с органическими и металлорганическими кислотами.

Гидриды переходных металлов могут выступать роли акцептора протона и образовывать ДВС комплексы с различными донорами протона [12, 115]. Для гиридов VI-VIII групп эти комплексы охарактеризованы, получены их термодинамические характеристики и показано, что они являются интермедиатами реакций с переносом протона, приводящим к образованию комплекса с молекулярным водородом. В тоже время гидриды переходных металлов 10 группы практически не исследовались с этой точки зрения.

2.3.1. Диводородные связи и перенос протона с участием (^{tBu}PCP)PdH и органических кислот.

Среди комплексов металлов 10 группы ранее было изучено взаимодействие гидрида никеля (^{*t*Bu}PCP)NiH с трифторэтанолом (CF₃CH₂OH), и охарактеризован ДВС комплекс (^{tBu}PCP)NiH···HOCH₂CF₃ [7]. Несмотря на то, что тридентатные пинцетные лиганды донируют электроны оболочку более на атома металла, делая его электроннонасыщенным, было показано, что (^{*ви*РСР)NiH имеет довольно низкую} протоноакцепторную способность ($E_i = 0.71$) среди исследованных гидридов переходных металлов. Нами была поставлена задача изучить взаимодействие (^{*t*Bu}PCP)PdH с широким набором протонодоноров, установить условия образования ДВС комплексов, получить спектральные, энергетические и структурные характеристики ДВС комплексов и сравнить с уже полученными ранее для гидрида никеля (^{Bu}PCP)NiH. Установить условия, в которых происходит перенос протона от органических кислот к гидриду палладия, и исследовать механизм этой реакции.

Для решения поставленных задач исследовано взаимодействие гидрида палладия (^{tBu}PCP)PdH (**III-1**) с протонодонорами различной силы: индол ($P_i = 0.75$; $pK_a = 21$ в ДМСО), фторированные спирты [CF₃CH₂OH (ТФЭ, $P_i = 0.89$; $pK_a = 23.5$ в ДМСО), (CF₃)₂CHOH (ГФИП, $P_i = 1.05$; $pK_a = 17.9$ в ДМСО)] и фенолы [n-фторфенол (ПФФ, $P_i = 1.10$; $pK_a = 18.0$ в ДМСО), 4-(4'-нитрофенилаза)фенол (ПНАФ, $P_i = 1.23$; $pK_a = 12.8$ в ДМСО)]. Исследование проведено методами ИК ЯМР УФ спектроскопии (190-290К) в сочетании с квантово-химическими расчетами.

Такие слабые кислоты, как индол и ТФЭ образуют ДВС комплексы с **Ш-1** без последующего переноса протона. При добавлении ТФЭ к гидриду **Ш-1** (1-4 экв. в толуоле при 190К) в ИК спектрах наблюдается уменьшение интенсивности исходной полосы валентного колебания v_{OH} спирта (ТФЭ) и появление широкой низкочастотной полосы

v_{OH}, относящейся к ВС-комплексу (Таблица 10). При повышении температуры равновесие (Схема 38) смещается в сторону исходных соединений, что свидетельствует об обратимости процесса образования ВС комплекса. Величина смещения полосы валентных колебаний ОН групп протонодонора ($\Delta v_{OH} = v_{OH}^{cвя3} - v_{OH}^{cвоб} = 152 \text{ см}^{-1}$) при образовании комплекса с гидридом палладия оказалась больше чем для комплекса с гидридом никеля ($\Delta v_{OH}(Ni) = -113 \text{ см}^{-1}$). Из температурной зависимости константы образования ДВС комплексов получены термодинамические параметры и фактор основности (E_j) гидридного лиганда в комплексе **III-1** (Таблица 10). Более высокий фактор основности **III-1** ($E_j = 0.89$) показывает, что гидрид палладия более склонен к образованию диводородной связи, чем его никелевый аналог ($E_j = 0.71$). Для водородно-связанного комплекса **III-1** с индолом смещение полосы $v_{NH}^{cвя3}$ намного меньше, и энтальпия образования водородной связи $\Delta H^{\circ}_{HB}(\Delta v_{NH}) = -2.6 \text{ ккал·моль}^{-1}$.

В спектрах ЯМР ¹Н добавление избытка ТФЭ к гидриду **III-1** в толуоле- d_8 приводит к смещению гидридного резонанса (δ_{PdH} –3.8 м.д.) в сильное поле на 0.5 м.д. и уменьшению его времени релаксации T_{1min} в 1.8 раза по сравнению с $T_{1min}^{cвоб}$ исходного гидрида (Схема 38, Таблица 10). Эти данные позволили оценить расстояния Н····Н в ДВС комплексе равное 1.9 Å, что меньше суммы Ван-дер-Вальсовых радиусов двух атомов водорода (2.4 Å) и сопоставимо с найденными ранее для других диводородно-связанных комплексов [56].

Схема 38

	ИК	
$\Delta v_{OH}, cm^{-1}$	-152	
$\Delta\mathrm{H}^{o}$, а ккал · моль -1	-3.1	
ΔH° , ккал·моль ⁻¹	-3.2±0.5	
ΔS° , кал·моль ⁻¹ ·К ⁻¹	-9±2	
$E_{ m j}{}^{ m b}$	0.89	
	۶ AWB د	
	Pd-H HH	
δ, м.д.	-3.8	-4.2
T _{1min} , мс	400	220
T, K ^d	190	230

Таблица 10. ИК и ЯМР спектральные и термодинамические характеристики ДВС комплекса **III-1** с ТФЭ.

[a] рассчитано из уравнения $\Delta H^{\circ} = 18 \cdot \Delta v_{OH}/(720 - \Delta v_{OH})$; [b] $E_{j} = \Delta H^{\circ}/(\Delta H^{\circ}_{11} \cdot Pi)$; [c] в толуоле- d^{8} [d] температура, при которой наблюдается $T_{1\min}$.

Особенности данных гидридов можно связать с изменениями относительной прочности связей МН в этой группе, о чем можно судить по положению полосы характеристичного валентного колебания связи М-Н в ИК спектрах: широкая несимметричная полоса v_{MH} проявляется при 1739 см⁻¹ для (^{*H*}^{PCP})NiH и при 1718 см⁻¹ для (^{*H*}^{PCP})PdH в толуоле. Такой ряд частот колебаний означает, что прочность связи М-Н, уменьшается в ряду Ni-H > Pd-H. Образование ДВС комплекса с гидридом **III-1** приводит к нетипичным изменениям в ИК спектре (Рисунок 45). В присутствии избытка ТФЭ появляется высокочастотная полоса $\Delta v_{PdH} = 34$ см⁻¹, что больше чем для ДВС комплекса с гидридом никеля ($\Delta v_{NiH} = 30$ см⁻¹). Заметим, что такой высокочастотный сдвиг нехарактерен для образования водородной связи, и до сих пор наблюдался только для гидридных комплексов переходных металлов 10 группы [116].

Рисунок 45. ИК спектры в области v_{MH} (PCP)PdH (0.03 М - а), в присутствии ТФЭ (0.06 М – b, 0.15 М- с). Толуол, 190К, 1 = 0.04 см.

Добавление к **III-1** более сильных кислот - фенолов и ГФИП ($P_i > 1.0, pK_a < 18$) приводит к частичному переносу протона. Исследование условий образования и свойств ДВС комплексов между гидридом палладия **III-1** и фенолами было проведено при низкой температуре, так как нагревание приводит к переносу протона.

Так, при взаимодействии гидрида палладия с *n*-фторфенолом в толуоле в области v_{MH} наблюдается смещение полосы исходного гидрида в высокочастотную область v_{MH}^{связ} = 1755 см⁻¹ (Δ v_{MH} = 39 см⁻¹), что, как и в случае с ТФЭ, свидетельствует об участии гидридного лиганда в образовании водородной связи. С 4-(4'-нитрофенилаза)фенолом (ПНАФ) образование водородной связи было зафиксировано методом УФ-видимой спектроскопии. В присутствии гидрида палладия **III-1** полоса 4-(4'-нитрофенилазо)фенола в УФ спектре в толуоле ($\lambda_{max} = 378$ нм) сдвигается в длинноволновую область на 7–10 нм (Рисунок 46).

Рисунок 46. УФ спектры ПНАФ (0.0004 М – а) и ПНАФ в присутствии **III-1** (0.0004 М – б). Толуол, 230К, l = 0.04 см.

Для получения термодинамических параметров эксперимент (взаимодействие гидрида III-1 с ПНАФ в соотношении 1.1–1 в толуоле) проводили при температуре в интервале (190–250 К) и наблюдали за изменением интенсивности полосы v_{OH} исходного фенола в ИК спектре. При дальнейшем нагревании происходит выделение водорода. Из температурной зависимости константы равновесия (Рисунок 47) определили энтальпию и энтропию образования водородно-связанного комплекса ΔH° = -7.0 ± 0.3 ккал·моль⁻¹, ΔS° = -19 ± 1 кал·моль⁻¹·K⁻¹.

Рисунок 47. Температурная зависимость констант равновесия образования ДВС комплекса между гидридом III-1 (c = 0.005 M) и ПНАФ (c = 0.0055 M), полученных на основании анализа изменения полос v_{OH} . Толуол, 190 – 250 K, 1 = 0.4 см.

Квантово-химические расчеты (DFT/B3LYP и DFT/M06) взаимодействия гидрида **Ш-1** с ТФЭ дают данные о строении ДВС комплекса. Рассчитанные расстояния Н····Н практически одинаковы для комплексов никеля и палладия, а угол О-Н…Н близок к линейному (Рисунок 48, Таблица 11), что характерно для диводородно-связанного комплекса. При образовании ДВС комплекса происходит удлинение связей М–Н и О–Н, а также перераспределению электронной плотности во взаимодействующих молекулах. Происходит уменьшение частичного отрицательного заряда на атоме металла и увеличение частичного отрицательного заряда на гидридном водороде. Несмотря на связи M–H. расчет подтверждает наблюдаемое экспериментально удлинение высокочастотное смещение полосы v_{PdH} и совпадает с проведенными ранее расчетами для никелевого комплекса. Такое высокочастотное смещение нехарактерно для образования диводородной связи и, по-видимому, является особенностью поведения гидридов металлов 10 группы.

Рисунок 48. Оптимизированная геометрия диводородно-связанного комплекса (PCP)PdH…TФЭ (DFT/M06). На рисунке не приведены атомы водорода, принадлежащие *трет*-бутильным группам.

Таблица 11. Основные энергетические, геометрические и электронные параметры ДВС комплексов гидридов никеля и палладия с ТФЭ по данным квантово-химического расчета (DFT/M06).

	PdH	NiH
ΔE_{ZPVE} , ккал моль ⁻¹	-12.2	-11.7
$\Delta d_{ ext{M-H}}$, Å	0.005	0.003
Δd _{O-H} , Å	0.020	0.021
d _{м-но} , Å	3.035	2.989
d _{H-H} , Å	1.539	1.535
∠OHH, °	162.3	174.6
$\Delta q(M)$	0.077	0.125
$\Delta q(H_M)$	-0.093	-0.105
$\Delta q(O)$	-0.045	-0.042
$\Delta q(H_0)$	0.027	0.031
$\Delta v_{\rm MH}$	92	87
$\Delta v_{ m MH}*$	8	10

*- смещение, посчитанное методом B3LYP

Анализ электронной плотности с помощью теории «Атомы в молекулах» (AIM) показывает наличие критической точки (3,–1) между атомами водорода гидрида III-1 и спирта, что свидетельствует об образовании диводородной связи (Таблица 12). Важно отметить, что очень маленькие значения эллиптичности ε свидетельствуют о линейном пути связи. Это исключает участие металла во взаимодействии с протонодонором. Значения E_{cont}, полученные из функционала плотности потенциальной энергии в критической точке (3,-1), ближе к значениям ΔH^o_{HB}, рассчитанным из экспериментальных данных (Таблица 10), чем ΔE_{ZPVE} (Таблица 11). Однако во всех случаях диводородная связь с гидридом палладия **III-1** немного сильней, чем с гидридом никеля.

Таблица 12. Данные анализа методом AIM контакта H····H в ДВС комплексах гидридов палладия и никеля с ТФЭ.

	Pd	Ni [7]
ρ	0.031	0.030
$\nabla^2 \rho$	0.044	0.045
Econt	-6.1	-5.9
3	0.005	0.016

ρ - электронная плотность в критической точке (3,-1); $\nabla^2 ρ$ - Лапласиан электронной плотности в критической точке (3,-1); E_{cont} – энергия диводородной связи $E = 0.5 \cdot V(r)$ (ккал/моль), где V(r) - функционал плотности потенциальной энергии в критической точке (3,-1); ε - эллиптичность связи $ε = (λ_1/λ_2-1)$, где $λ_1$ и $λ_2$ отрицательные значения Гессиана электронной плотности в критической точке (3,-1) $λ_1 < λ_2 < 0$

Перенос протона. Взаимодействие гидрида III-1 с более сильными донорами протона ($P_i > 1.0, pK_a < 18$) не останавливается на стадии образования ДВС комплекса.

Перенос протона приводит к образованию ионных интермедиатов, теряющих молекулу водорода уже при низкой температуре. Скорость процесса зависит от температуры, силы кислоты и концентрации.

Так, перенос протона к (^{*iBu*}PCP)PdH (**III-1**) от 4-(4'-нитрофенилаза)фенола (ПНАФ, P_i =1.23; pK_a = 12.8 в ДМСО) начинается уже при температуре 250 К в толуоле. При этом наблюдается медленное исчезновение гидридного сигнала в спектре ЯМР ¹H, сопровождающееся появлением типичного синглета молекулы водорода (δ 4.55) и набора дублетов в ароматической области, относящихся к протонам ПНАФ в продукте. Спектры ЯМР ³¹P в толуоле показали уменьшение сигнала **III-1** при δ_P 91.3 и рост резонанса продукта при δ_P 70.2 (230 K). Положение сигнала продукта значительно ближе к литературному значению резонанса (^{*iBu*}PCP)Pd(OR) комплексов (R = Ar, δ_P 69.9-70.9 в C₆D₆) [117], чем к положению сигнала катионного комплекса с молекулярным водородом [(^{*iBu*}PCP)Pd(η^2 -H₂)]⁺ (δ_P 95 в C₆H₅F) [118]. Это позволяет полагать, что в случае взаимодействия с OH–кислотой образуется нестабильный (η^2 -H₂)-комплекс, быстро теряющий H₂, что приводит к алкокси-/арилокси производному (**Схема 39**).

Значительное различие в положении полос длинноволновых переходов нейтральной ОН-кислоты и ее аниона замещенных фенолов делает метод УФ-видимой спектроскопии весьма удобным для исследования процессов образования водородной связи и переноса протона. Кроме того, высокая чувствительность данного метода позволяет использовать небольшие количества вещества. Так, в УФ-видимых спектрах в присутствии **III-1** появляется новая полоса продукта при $\lambda_{max} = 520$ нм в ТГФ (510 нм в толуоле), интенсивность которой растет с увеличением температуры (Рисунок 49). Мониторинг реакции проведен при соотношении реагентов 1:2 (**III-1** : ПНАФ) в ТГФ (Рисунок 50). Наблюдаемые константы скорости второго порядка, k_{obs} , изменяются от 3.5·10⁻² М⁻¹·c⁻¹ при T = 270 K до 0.62 М⁻¹·c⁻¹ при T = 320 K. Анализ температурной зависимости k_{obs} по методу Эйринга позволил определить активационные параметры реакции $\Delta H^{\neq} = 9.2 \pm 0.4$ ккал·моль⁻¹, $\Delta S^{\neq} = -30 \pm 1$ кал·моль⁻¹·K⁻¹. Свободная энергия активации (ΔG^{\neq}_{298K}) равна 18.1 ккал·моль⁻¹ при T = 298 K. Такие активационные параметры находятся в интервале литературных значений для переноса протона с образованием комплекса с молекулярным

водородом [М(η^2 -H₂)]⁺, считая, что перенос протона является скорость-определяющей стадией реакции [119].

Рисунок 49. УФ-вид. спектры ПНАФ (с = 0.004 М) в присутствии эквимолярного количества гидрида **III-1** при разных температурах в ТГФ.

Рисунок 50. УФ-видимые спектры во времени (слева) и соответствующие кинетические кривые (справа) реакции между **III-1** (с = 0.0025 M) и ПНАФ (с = 0.005 M). ТГФ, 298 K, 1 = 0.04 см; спектры регистрировались каждые 2 мин.

Перенос протона от ОН кислот изучен с помощью DFT расчетов на примере реакции *p*-NO₂-фенола (ПНФ) с гидридом **III-1**. DFT/M06 оптимизация геометрии в ТГФ показала, что на первой стадии образуется ДВС- комплекс, на второй - катионный (η^2 -H₂)интермедиат и затем арилокси-продукт выделения H₂. Энергия активации переноса протона ($\Delta E^{\neq}_{THF} = 9.3$ ккал·моль⁻¹) соответствует экспериментальной величине $\Delta H^{\neq} = 9.2$ ккал·моль⁻¹. Интермедиат процесса имеет структуру комплекса с молекулярным водородом в ионной паре с анионом сопряженной кислоты, [(tBu PCP)Pd(η^2 -H₂)]⁺...OAr⁻. Его энергия на 5.5 ккал·моль⁻¹ выше энергии диводородно-связанного комплекса и на 5.1 ккал·моль⁻¹ выше продукта [(tBu PCP)Pd(OAr)], и, следовательно, этот интермедиат должен быть нестабилен. Можно предположить, что объёмные *t*Bu заместители защищают η^2 -H₂ лиганд от замещения анионом в переходном состоянии (Рисунок 51). Несколько более высокая стабильность продукта реакции в сравнении с ДВС комплексом и необратимость потери водорода делают энергетически предпочтительной стадию выделения H₂. Понижение температуры увеличивает барьер переноса протона, в результате при низких температурах (190-250 K) экспериментально наблюдаются только ДВС комплексы.

Рисунок 51. Переходное состояние переноса протона в реакции гидрида **III-1** с ПНФ (TS_{PT}, *слева*) и выделения H₂ (TS_{H2}, *справа*).

Таким образом, установлены условия образования диводородных связей гидрида палладия **III-1** со спиртами и фенолами, получены их спектральные и термодинамические (ΔH° , ΔS°) характеристики. Показано, что при переходе от Ni к Pd протоноакцепторная способность гидридных лигандов в комплексах (tBu PCP)MH увеличивается, что определяет его большую реакционную способность. Установлено, что перенос протона от органических кислот к гидриду палладия происходит через диводородно-связанные интермедиаты, в результате которого образуется катионный (η^2 -H₂)-интермедиат и арилокси-продукт выделения H₂.

2.3.2. Взаимодействие (^{*t*Bu}PCP)PdH с гидридами вольфрама LW(CO)₃H (L = Cp, Tp) как кислотами.

Нейтральные гидриды переходных металлов могут проявлять различную реакционную способность, являясь формально источником гидрид-иона или протона, в металлорганических превращениях. Ранее образования различных возможность диводородной связи между двумя гидридами металлов с противоположными зарядами на атоме водорода (М-Н³·...³+Н-М'), была продемонстрирована на единственном примере взаимодействия гидрида никеля (^{*ви*}РСР)NiH и гидрида вольфрама CpW(CO)₃H [7]. В результате внутримолекулярного переноса протона происходит образование биметаллической контактной ионной пары, сопровождаемое выделением молекулы водорода. Данные результаты показали необходимость более глубокого изучения «кислотных» и «основных» гидридов переходных металлов, чтобы раскрыть возможную

86

роль таких необычных взаимодействий, как в молекулярном распознавании, так и в биметаллическом катализе с участием гидридов переходных металлов.

В качестве доноров протона мы выбрали следующие металлорганические кислоты $CpW(CO)_{3}H$ ($Cp = \eta^{5}-C_{5}H_{5}$) и $TpW(CO)_{3}H$ ($Tp = HB(Pz)_{3}$) (Схема 40) и изучали их в паре с гидридом палладия (**III-1**). Ранее было изучено взаимодействие нейтральных гидридов $CpM(CO)_{3}H$ (M = Mo, W) (pKa 13.9 и 16.1 в CH₃CN, соответственно) с различными основаниями (фосфиноксиды и азотные основания) и показано, что образование комплексов $MH\cdots B$ предшествует переносу протона от гидридов металлов к основанию [6]. Известно, что гидридный комплекс трикарбонила вольфрама с Tp-лигандом также проявляет кислотные свойства (pKa 14.4 в CH₃CN) [120], и является более сильной кислотой, чем гидрид вольфрама с Cp-лигандом. Поскольку TpW(CO)₃H не изучался ранее в качестве донора водородной связи, мы предварительно исследовали его поведение в присутствии оснований. В связи с ограниченной растворимостью все эксперименты проводились в толуоле, в отличие от CpW(CO)₃H, хорошо растворимого в гексане.

Схема 40

Благодаря чувствительности СО-групп к изменениям в координационной сфере металла, карбонильные комплексы очень удобны для изучения методом ИК спектроскопии. Добавление избытка пиридина (Ej = 1.3) при 190К приводит к появлению в ИК спектре в области v_{CO} новой низкочастотной полосы ($\Delta v_{CO} = 15 \text{ см}^{-1}$) (Рисунок 52, Схема 41). Известно, что при образовании водородной связи такое низкочастотное смещение типично для СО-групп протонодонорных металлогидридов вследствие подачи избыточной электронной плотности с основания на разрыхляющие орбитали связи М-Н и СО. Следовательно, образуется водородно-связанный комплекс **Ш-1…Ру**. При повышении температуры переноса протона не происходит, также как и в случае СрW(CO)₃H [6].

Рисунок 52. ИК спектры в области v_{CO} TpW(CO)₃H (0.0035M) и в присутствии пиридина (0.07M). Толуол, 190-294 К.

При растворении гидрида TpW(CO)₃H в чистом пиридине уже при комнатной температуре происходит полный перенос протона, и в ИК спектре наблюдается появление двух новых полос ионного комплекса TpW(CO)₃⁻/PyH⁺ (v_{CO} 1881, 1749 см⁻¹). Для CpW(CO)₃H в пиридине наблюдается равновесие двух форм – молекулярной и ионной, что объясняется меньшей кислотностью этого гидридного комплекса.

Рисунок 53. ИК спектры в области v_{CO} TpW(CO)₃H в интервале температур 240 - 290 К. Пиридин.

Взаимодействие ТрW(CO)₃H с триэтиламином в толуоле приводит к переносу протона уже ниже 270К (Рисунок 54). При понижении температуры интенсивность полос v_{CO} депротонированной формы растет, что свидетельствует о существовании равновесия, которое смещается в сторону ионных комплексов (Схема 42). При 270 К К_Σ = [M-···+HB]·([MH]·[B])⁻¹ составляет 331 M⁻¹. Из температурной зависимости lnK были получены термодинамические параметры переноса протона в толуоле $\Delta H_{\Pi\Pi}$ = -11.3 ккал·моль⁻¹, $\Delta S_{\Pi\Pi}$ = -26.5 кал·моль⁻¹·K⁻¹. Для гидридов CpM(CO)₃H (M = Mo, W) взаимодействие с Et₃N в менее полярном и некоординирующем гексане приводит к полному депротонированию гидридов [6]. Толуол способен образовывать H-связи в качестве основания [19, 20, 121], что будет уменьшать активность кислоты и, соответственно, уменьшать константы образования водородной связи и препятствовать переносу протона.

Таким образом, проведенная серия экспериментов показывает, что протонодонорная способность TpM(CO)₃H выше, чем у CpM(CO)₃H, что повышает прочность водородных связей и облегчает перенос протона к основаниям. Изменение силы основания позволило получить спектральные характеристики водородно-связанных и ионных форм TpM(CO)₃H (Схема 42), которые были использованы при дальнейшем исследовании.

Рисунок 54. ИК спектры в области v_{CO} TpW(CO)₃H (c = 0.002 M) c Et₃N (c = 0.0024 M) в интервале температур 190 – 290 К. Толуол, 1 = 0.1 см.

2.3.3. Диводородно-связанные комплексы между двумя гидридами и перенос протона.

Взаимодействие гидрида **III-1** с гидридами вольфрама TpW(CO)₃H и CpW(CO)₃H приводит к образованию диводородной связи, которую можно наблюдать при низких температурах методами ЯМР и ИК спектроскопии (Схема 43).

Схема 43

Методом ЯМР ¹Н спектроскопии было подтверждено образование водородносвязанных комплексов **III-1···HW**^{Tp} и **III-1···HW**^{Cp} при низкой температуре. При добавлении к раствору гидрида палладия **III-1** карбонильных комплексов TpM(CO)₃H и CpM(CO)₃H в TГФ- d_8 не происходит сдвига гидридного резонанса в сильное поле. Однако наблюдается уменьшение минимума времени релаксации T_{1min} резонансного сигнала δ_{PdH} для обеих смесей [Pd]/[TpW] и [Pd]/[CpW]. Это позволило определить расстояние H····H в ДВС комплексах **III-1···HW**^{Tp} и **III-1···HW**^{Cp} равное 2.27 и 2.15 Å, соответственно. Как и в других ДВС комплексах, полученные расстояния H····H меньше суммы Ван-дер-Ваальсовых радиусов атомов водорода (2,4 Å).

Таблица 13. ЯМР спектральные характеристики гидридов III-1 и их ДВС комплексов с III-1···HW^{Tp} и III-1···HW^{Cp} в $T\Gamma \Phi$ - d_8 .

	III-1	$III-1 \cdots HW^{Tp}$	III-1···HW ^{Cp}
δ, м.д.	-4.23	-4.23	-4.14
T _{1min} , мс	460 ^a	-	280
	890 ^b	630	-
T, K ^c	190	210	220
d _{H…H} , Å		2.27	2.15

[а] 400МГц [b] 600МГц [c] Температура, при которой наблюдается Т_{1min}

В ИК спектрах реакционной смеси в области v_{PdH} при небольшом избытке гидрида вольфрама CpM(CO)₃H (1.33 экв.) в толуоле появляется новая высокочастотная полоса $\Delta v_{MH} = 12 \text{ см}^{-1}$, связанного диводородной связью [7]. В области v_{CO} гидрида CpW(CO)₃H появляются новые низкочастотные полосы $\Delta v_{CO} = 13 \text{ см}^{-1}$, соответствующие ДВС комплексу **III-1…HW**^{Cp}. Образующаяся диводородная связь PdH…HW относится к слабым водородным связям. Энтальпия образования комплекса **III-1…HW**^{Cp}, оцененная по правилу факторов Иогансена, составляет -1.2 ккал·моль⁻¹ в толуоле. Как видно, энергия ДВС комплекса **III-1…HW**^{Cp} ниже, чем для комплекса **III-1**…TФЭ ($\Delta H^{\circ} = -3.2 \text{ ккал·моль}^{-1}$) и выше, чем для комплекса между гидридом никеля и CpW(CO)₃H ($\Delta H^{\circ} = -1.0 \text{ ккал·моль}^{-1}$). Такое различие согласуется с большей протоноакцепторной способностью гидрида палладия по сравнению с гидридом никеля (E_j составляет 0.89 и 0.71, соответственно).

Структура ДВС комплекса **III-1···HW**^{Ср}, полученная из квантово-химических расчетов (DFT/M06), показывает, что гидридный лиганд акцепторного комплекса (^{/Bu}PCP)PdH (**III-1**) связан с гидридным лигандом и одним из атомов водорода Ср-кольца донорного комплекса CpW(CO)₃H (Pucyhok 55). Аналогичное строение было установлено и в случае никеля. Длина связи PdH···HW (2.37 Å) укорачивается по сравнению с NiH···HW (2.58 Å), а связь PdH···HC (2.20 Å) немного удлиняется по сравнению с NiH···HC (2.16 Å). Расчетные данные подтверждают полученное экспериментально высокочастотное смещение полосы валентного колебания v_{PdH} исходного гидрида при образовании диводородно-связанного комплекса **III-1···HW**^{Cp}. В структуре ДВС комплекса **III-1···HW**^{Tp}, схожей с **III-1···HW**^{Cp}, гидрид палладия связан с гидридом вольфрама и с CH-протоном в пиразоле Тр-лиганда комплекса ТрW(CO)₃H (Pucyhok 55). Длины водородных связей PdH····HWTp (2.25 Å) и PdH····HC (2.11 Å) укорачиваются по сравнению с

Рисунок 55. Оптимизированные геометрии ДВС комплексов III-1···HW^{Cp} и III-1···HW^{Tp}.

Анализ электронного строения этого комплекса с помощью теории «Атомы в молекулах» (AIM) показал наличие двух критических точек (3, -1) между взаимодействующими атомами водорода (Рисунок 56, Таблица 14). Большее значение протоноакцепторной способности гидрида палладия, чем гидрида никеля, приводит к увеличению вклада взаимодействия H_{Pd} ···· H_W по сравнению с вкладом взаимодействия H_{Pd} ···· H_{Cp} в ДВС комплексе **VI-1**. Стоит отметить важность взаимодействия H_M ···· H_{Cp} , без которого ДВС комплекс не образуется. Это подтверждено нами экспериментально на

примере взаимодействия с Cp*Mo(CO)₃H, где Cp* = η^5 -пентаметилциклопентадиенил, для которого ДВС комплекс с гидридом **III-1** не обнаружен. Не смотря на равный вклад взаимодействий H_{Pd}…H_{Cp} и H_{Pd}…H_w, дальнейшее взаимодействие и перенос протона идет по связи W-H из-за ее меньшей прочности и большей поляризуемости.

Рисунок 56. Фрагмент молекулярного графа комплекса **Ш-1…НW**^{Ср}. • - Критические точки связей (3, -1), • - кольцевая критическая точка (3, +1).

Таблица 14. Данные анализа АМ двух Н···Н контактов в комплексе III-1···HW^{Cp}.

	$H_{Pd} \cdots H_{Cp}$	$H_{Pd} \cdots H_W$
ρ	0.009	0.008
$\nabla^2 \rho$	0.026	0.018
Econt	-1.33	-0.93
3	0.167	0.149

ρ - электронная плотность в критической точке (3,-1); $\nabla^2 ρ$ - Лапласиан электронной плотности в критической точке (3,-1); E_{cont} – энергия диводородной связи E = 0.5 V(r) (ккал/моль), где V(r) - функционал плотности потенциальной энергии в критической точке (3,-1); ε - эллиптичность связи $ε = (λ_1/λ_2-1)$, где $λ_1$ и $λ_2$ отрицательные значения Гессиана электронной плотности в критической точке (3,-1) $λ_1 < λ_2 < 0$

Проведя ряд спектральных экспериментов и квантово-химических расчетов для реакций между (^{*IBu*}PCP)PdH (**III-1**) и LW(CO)₃H (L = Cp, Tp), мы установили, что оба процесса протекают по одинаковой схеме (Схема 44). ИК спектральные исследования взаимодействия двух гидридов в TГФ в области v_{CO} (Рисунок 57, Рисунок 58) показали, что при 190К в спектре кроме полос исходных трикарбонилов (2003, 1910, 1888 см⁻¹ для TpW(CO)₃H и 2015, 1917 см⁻¹ для CpW(CO)₃H), также присутствуют две низкочастотные полосы, соответствующие ионным интермедиатам v_{CO} 1884, 1754 см⁻¹ для Tp(CO)₃W⁻ (**III-2^{Tp}**) и v_{CO} 1891 1775 см⁻¹ для Cp(CO)₃W⁻ (**III-2^{CP}**). В случае трикарбонила вольфрама с Tp-лигандом интермедиата **III-2^{Tp}** образуется больше, чем **III-2^{CP}**, и он накапливается в смеси в диапазоне температур 190-230 К. Это позволяет сделать вывод о том, что интермедиат **III-2^{Tp}** обладает большей термодинамической стабильностью, вероятно за счет более сильной электронодонорной способности триспиразолилборатного (Tp) лиганда. При нагревании раствора начинается выделение водорода, в результате чего

начинает падать интенсивность полос исходных и интермедиатных комплексов, и расти три новые полосы продуктов 1650, 1796, 1901 см⁻¹ для [TpW(CO)₂(μ -CO)…Pd(^{tBu}PCP)] (**III-3**^{Tp}) и 1660 1819 1910 см⁻¹ для [CpW(CO)₂(μ -CO)…Pd(^{tBu}PCP)] (**III-3**^{Cp}).

Рисунок 57. ИК спектры в области v_{MH} и v_{CO} реакции гидрида (^{*Bu*}PCP)PdH (**III-1**, 0.0053 М) с CpW(CO)₃H (0.004 М), 190 – 290 К, 1 = 0.1 см, в ТГФ.

Рисунок 58. ИК спектры в области v_{MH} и v_{CO} реакции гидрида (^{*t*Bu}PCP)PdH (**III-1**, 0.0045M) с TpW(CO)₃H (0.003M), 190 – 290 K, 1 = 0.1 см, в ТГФ.

В спектрах ЯМР ¹Н при 190-220К присутствуют сигналы исходных гидрида палладия III-1 δ_{PdH} -4.14 и гидрида вольфрама CpW(CO)₃H δ_{WH} -7.44. При нагревании раствора до 220 К начинается выделение водорода (δ_{H2} 4.54). При этом в спектрах ЯМР ³¹P{¹H} уменьшается сигнал исходного комплекса III-1 δ_P 91.32 и растет резонанс продукта (III-3^{Cp}) δ_P 74.81. Сигналы интермедиатных комплексов III-2^{Cp} зафиксировать не удалось. При мониторинге протонных спектров смеси III-1 с гидридом вольфрама TpW(CO)₃H при температуре 220К наблюдается появление и рост двух дублетов (δ 1.46, 0.81 м.д.), исчезающих при дальнейшем нагревании. Поведение этих сигналов полностью совпадает с наблюдаемым в ИК спектрах поведением анионного интермедиата Tp(CO)₃W⁻ (III-2^{Tp}). Также был охарактеризован продукт данной реакции: ¹H, 600 МГц, ТГФ-*d*₈, δ 7.66 (s, 3H, Tp CH), 7.59 (s, 3H, Tp CH), 5.98 (s, 3H, Tp CH), 6.82-6.76 (m, 3H, ArH), 3.19 (s, 4H, CH₂), 1.24 (36H, CH₃), ³¹P δ 76.

Результаты квантово-химических расчетов показали, что координате данной реакции соответствует линейное движение протона по оси, соединяющей два металлоцентра. В результате образуется необычный *end-on* $\mu, \eta^{1:1}$ -H₂ интермедиат [(Bu PCP)Pd($\mu, \eta^{1:1}$ -H₂)WCp(CO)₃] (**III-2**^{Cp}), в структуре которого молекула водорода представляет собой гапта-один мостик между двумя металлами (Рисунок 59, *справа*). Однако был также обнаружен второй минимум на поверхности потенциальной энергии, принадлежащий ионной паре, в которой H₂-лиганд связан с [(Bu PCP)M]⁺ традиционным η^2 -способом *side-on* (Рисунок 59, *слева*). η^2 -H₂ комплексы на 7-8 ккал·моль⁻¹ энергетически более

стабильны, чем μ , $\eta^{1:1}$ -H₂ интермедиаты (Рисунок 60), а барьер между ними пренебрежимо мал (< 1 ккал моль⁻¹). Но их концентрация в смеси крайне мала, чтобы найти соответствующий сигнал в спектре ЯМР и подтвердить структуру экспериментально. При повышении температуры (> 230-250 K) комплекс **III-2^{Cp}** теряет молекулу H₂ с образованием стабильного продукта реакции –изокарбонильного комплекса **III-3^{Cp}**, который представляет собой биметаллическую контактную ионную пару [CpW(CO)₂(μ -CO)…Pd(^{*t*Bu}PCP)] с мостиковым CO-лигандом.

Рисунок 59. Оптимизированные геометрии двух таутомеров **III-2**^{Cp} [(${}^{tBu}PCP$)Pd(η^{2} -H₂)WCp(CO)₃] (*слева*) и [(${}^{tBu}PCP$)Pd($\mu, \eta^{1:1}$ -H₂)WCp(CO)₃] (*слева*).

Стоит отметить, что интермедиат, содержащий (η^2 -H₂) лиганд, при замене никеля на палладий становится более стабильным, а барьер переноса протона уменьшается на 40%. К сожалению, нам так и не удалось локализовать переходное состояние выделения H₂ из комплексов **III-2^{Tp}**, но мы использовали энергию активации потери водорода из ионной пары [(tBu PCP)M(η^2 -H₂)]⁺...[OAr⁻] (9 ккал·моль⁻¹) как резонную оценку.

Reaction coordinate

Рисунок 60. Рассчитанный (DFT/M06) энергетический профиль реакции (^{*t*Bu}PCP)PdH с CpW(CO)₃H (красная линия) и с *p*-NO₂-фенолом (черная линия); приведены значения относительной энергии в TГФ (SMD модель) для Pd. Для сравнения тем же методом рассчитан профиль реакции (^{*t*Bu}PCP)NiH с CpW(CO)₃H (синяя линия).

Последняя стадия выделения водорода физически является необратимой, однако, если создать избыточное давление водорода в смеси, эта стадия может стать обратимой и биметаллическая ионная пара может присоединить обратно молекулу H₂. Проведение реакции между гидридом палладия III-1 и вольфрама ТрW(CO)₃H в менее полярном монофторбензоле приводит к аналогичным изменениям в ИК спектре в области колебаний карбонильных групп (Рисунок 61). Если оставить реакционную смесь в закрытой системе, через сутки в спектре происходит перераспределение полос: падение полос продукта [TpW(CO)₂(*µ*-CO)···Pd(^{*i*Bu}PCP)] (**III-3**^{Tp}, 1650, 1796, 1901 см⁻¹) и рост (**III-2**^{Tp}, 1884 1754 см⁻¹). При охлаждении до 240 К наблюдается еще больший рост интенсивности полос, то есть смещение равновесия в сторону образования анионного интермедиата III-2^{Tp}, и падение полосы исходного комплекса TpW(CO)₃H, то есть смещение первого равновесия вправо (Схема 45). Дальнейшее отогревание привело к росту полосы v_{CO} исходного гидрида и падению полос III-2^{Tp}, то есть возвращению системы в прежнее состояние. Таким образом, мы показали, что последняя стадия выделения водорода – равновесная. Продукт взаимодействия двух гидридов переходных металлов, который может обратимо присоединять H₂, представляет собой модель FLP (фрустрированная Льюисова пара).

Рисунок 61. ИК спектры (области v_{MH} и v_{CO}) реакции гидрида (^{*t*Bu}PCP)PdH (**III-1**, 0.004M) с TpW(CO)₃H (0.004M) и через сутки, 250 – 290 K, 1 = 0.04 см, монофторбензол.

Схема 45

Исследование кинетики реакции между гидридом палладия **Ш-1** и гидридами вольфрама, взятых в недостатке, проводилось в диапазоне 220-270К в ТГФ методом ИК спектроскопии по падению полосы СО исходных гидридов (Рисунок 62). Мониторинг реакции **Ш-1** и ТрW(CO)₃H при различных температурах показал накопление анионного интермедиата **Ш-2^{Tp}** и установление равновесия.

Рисунок 62. ИК мониторинг (*слева*) и кинетические кривые (*справа*) реакции гидрида **III-1** (c = 0.0045 M) с ТрW(CO)₃H (c = 0.003 M). 220 К, l = 0.04 см в ТГФ.

Процесс включает в себя три стадии, две из которых обратимы и одна (выделение водорода) необратима (Схема 44). Образование ДВС комплекса является диффузионноконтролируемой стадией, описываемой константой равновесия $K_1 = [Pd\cdots W]/[Pd][W]$. Перенос протона является скорость-определяющей стадией всего процесса. Наблюдаемая константа скорости, k_{obs} , изменяется от 0.14 M⁻¹·c⁻¹ при 240 K до 0.48 M⁻¹·c⁻¹ при 260 K для реакции между (^{*i*Bu}PCP)PdH (**III-1**) и CpW(CO)₃H, и от 0.16 M⁻¹·c⁻¹ при 220 K до 2.7 M⁻¹·c⁻¹ при 270 К для реакции III-1 и ТрW(CO)₃H. Анализ температурной зависимости дает величины энтальпии и энтропии активации (ΔH^{\ddagger} , ΔS^{\ddagger}), из которых была определена свободная энергия активации $\Delta G^{\ddagger}_{298K}$ при T = 298 К (Таблица 15). Параметры активации для системы с гидридом палладия существенно ниже, чем для никеля. При этом с палладием энергия активации $\Delta G^{\ddagger}_{298K}$ уменьшается при переходе от Ср к Тр, что согласуются с более низким барьером переноса протона (ΔE^{\ddagger}). Интересно, что активационные параметры реакции с ПНАФ выше, что свидетельствует о более высокой реакционной способности М-Н связи комплекса СрW(CO)₃H в реакции переноса протона.

	ΔH^{\neq} , ккал · моль · 1	<i>⊿S</i> [≠] , кал моль ⁻¹ · К ⁻¹	$\varDelta G^{\neq}_{298\mathrm{K}}$, ккал моль ⁻¹
$III-1 + TpW(CO)_3H$	5.6 ± 1.3	-26 ± 5	15.5 ± 0.6
$III-1 + CpW(CO)_3H$	6.5 ± 1.5	-35 ± 6	16.9 ± 0.7
$III-1 + \Pi HA\Phi$	9.2 ± 0.5	-30± 2	18.4 ± 1.1
$NiH + CpW(CO)_3H$	8.7 ± 0.8	-41 ± 3	20.8 ± 0.9

Таблица 15. Активационные параметры реакций.

Таким образом, при переходе от Ni к Pd и от Cp- к Тр-лиганду мы увеличиваем стабильность ионных интедмедиатов процесса, понижаем барьеры переноса протона и выделения водорода, что дает возможность более детально изучить взаимодействие двух нейтральных гидридов. Мы установили структуры водородно-связанных комплексов и комплексов с молекулярным водородом, а также показали, биметаллический продукт реакции [TpW(CO)₂(μ -CO)…Pd(^{*t*Bu}PCP)] существует в равновесии с ионными формами.

2.3.4. Взаимодействие биметаллической ионной пары с диметиламин-бораном.

Детальное понимание фундаментальных металлорганических реакций способствовало непревзойденному успеху катализа с участием комплексом, содержащих один атом металла. Типичный подход к катализу металлоорганическими соединениями состоит в том, чтобы выбрать подходящий металл (напр., Ru, Rh, Pd), который наиболее эффективно работает, и модифицировать конструкцию лиганда для контроля основных стадий реакции в катализе (напр., окислительное присоединение, восстановительное элиминирование, β-гидридный сдвиг). Альтернативным и практически неиспользуемым подходом является катализ, в котором два или более металлических центра или непосредственно участвуют в реакциях с разрывом и образованием связи, или каким-либо образом влияют на кинетику и селективность ключевых этапов катализа.

Как показано выше, взаимодействие (^{*Bu*}PCP)PdH (**III-1**) и LW(CO)₃H (L = Cp, Tp) приводит к образованию биметаллической ионной пары [LW(CO)₂(μ -CO)···Pd(^{*Bu*}PCP)], связанной посредством CO лиганда, и способной обратимо присоединять молекулярный водород. В связи с этим мы решили проверить ее активность по отношению к другим малым молекулам, таким как диметиламин-боран (ДМАБ). Наличие в амин-боране двух функциональных центров – кислотного (NH-протон) и основного (BH-группа) – позволяет предположить, что взаимодействие с комплексом **III-3^{Tp}** приводит к встраиванию молекулы ДМАБ между двумя атомами металлов – катионным палладием и анионным вольфрамом (Схема 46). Добавление 3.3 эквив. ДМАБ (0,01 М) к биметаллическому комплексу **III-3^{Tp}**, полученного взаимодействием двух нейтральных гидридов при 270 К за 20 минут, не приводит к видимым изменениям в ИК спектре. Однако, при охлаждении до 190 К в спектре наблюдается уменьшение интенсивности CO полос комплекса **III-3^{Tp}** и рост полос анионного комплекса **III-4^{Tp}** (Рисунок 63), что позволяет предположить существование равновесия (Схема 46), которое смещается при понижении температуры.

Рисунок 63. ИК спектры смеси гидрида **III-1** (c = 0.0045 M) с TpW(CO)₃H (c = 0.003 M) спустя 20 мин после смешения (T = 270 K) и при добавлении 3,3 эквив. ДМАБ (c = 0.01 M) при понижении температуры от 270-190 К с шагом 10 К. 1 = 0.2 см, ТГФ.

Нагревание смеси **III-3^{Тр}/ДМАБ** до комнатной температуры приводит к началу реакции дегидрирования. При мониторинге процесса в течение трех часов в ИК спектрах наблюдается уменьшение интенсивностей полос v_{BH} 2360-2260 см⁻¹ и v_{NH} 3200 см⁻¹ исходного ДМАБ вплоть до полного исчезновения. Это свидетельствует об одновременном разрыве связей В-Н и N-H в присутствии **III-3^{Tp}**. Одновременно происходит рост полосы 2434 см⁻¹, которую мы относим к продуктам дегидрирования.

В области валентных колебаний v_{CO} первые 1,5 часа наблюдается падение интенсивности полос комплекса [TpW(CO)₂(μ -CO)···Pd(^{*i*Bu}PCP)] (**III-3**^{Tp}) более чем вдвое (Рисунок 64) и рост полос анионного комплекса Tp(CO)₃W⁻ (**III-2**^{Tp}). В то же время интенсивность полосы валентных колебаний v_{PdH} 1718 см⁻¹ исходного гидрида палладия значительно увеличивается. Но затем, спустя 1.5 часа, наблюдается падение падение интенсивности полос v_{PdH} и v_{CO} анионного комплекса (**III-2**^{Tp}) и возвращение CO полос биметаллической ионной пары **III-3**^{Tp}.

При проведении реакции в толуоле охлаждение трехкомпонентной смеси приводит к образованию исходных нейтральных гидридов $Tp(CO)_3WH$ и (^{*t*Bu}PCP)PdH, что доказывает активацию ДМАБ через интермедиатный комплекс **III-4^{Tp}** (Схема 46). При этом в случае Cp(CO)₃WH степень образования исходного гидрида выше, то есть перенос протона от NH-группы ДМАБ к W⁻ легче, что соотносится с его меньшей кислотностью (Рисунок 65). Также при охлаждении наблюдается падение полосы v_{BH} ДМАБ (2364 см⁻¹) и симбатный

рост полосы v_{PdH} (1717 см⁻¹), что соответствует переносу гидрида с атома бора на палладий. При отогревании смеси исходная спектральная картина полностью восстанавливается, что говорит о равновесности процесса (Рисунок 66).

Рисунок 65. ИК спектр эквимолярной смеси (^{*t*Bu}PCP)PdH и CpW(CO)₃H (красный) и после добавления ДМАБ (черный), 190 К, толуол, 1 = 0.04 см.

Рисунок 66. Диаграмма, демонстрирующая зависимость от температуры интенсивности полос v_{PdH} и v_{BH} в смеси III-3^{Tp} (c = 0.01 M) с ДМАБ (c = 0.033 M).

Таким образом, при комнатной температуре биметаллическая ионная пара [LW(CO)₂(µ-CO)···Pd(^{tBu}PCP)] является катализатором дегидрирования ДМАБ. А образование (^{tBu}PCP)PdH (**III-1**) в ходе каталитической реакции свидетельствует о том,

что он участвует в каталитическом цикле. При этом бинарные смеси (^{*Bu*}PCP)PdH/ДМАБ, Tp(CO)₃WH/ДМАБ и Tp(CO)₃W⁻/ДМАБ, (^{*Bu*}PCP)Pd⁺/ДМАБ [122] не проявляют активности в дегидрировании ДМАБ, что подтверждает необходимость участия именно биметаллической ионной пары в данном процессе.

Изучение кинетики реакции проводилось в эквимолярных условиях (0.003 М) и при добавлении 5-ти кратного избытка ДМАБ (0.015 М) в присутствии ионной пары с Ср и Транионом (**III-3^{Tp}**, **III-3^{Cp}**). Полученные кинетические кривые показали симбатное уменьшение количества ионной пары **III-3** и рост содержания анионного комплекса **III-2** и (^{IBu}PCP)PdH (Рисунок 67, Рисунок 68). При увеличении загрузки амин-борана увеличивается временной интервал области, когда концентрации катализатора и интермедиатов реакции постоянны, а концентрация субстрата продолжает равномерно уменьшаться (квазистационарное состояние). В присутствии ионной пары с Ср-лигандом (**III-3^{Cp}**) дегидрирование происходит существенно быстрее и начальная скорость реакции ($v_0 = 2 \cdot 10^{-4}$ M/c) больше, чем для Тр-аналога ($v_0 = 4 \cdot 10^{-5}$ M/c). Скорость выделения водорода из двух гидридов (CpW(CO)₃H и **III-1**) в десять раз выше ($v_0 = 2 \cdot 10^{-3}$ M/c). Это свидетельствует о том, что скорость лимитирующей стадией каталитической реакции является развыв связей N-H/B-H в амин-боране.

Рисунок 67. Кинетические кривые (изменения интенсивности полос соответствующих валентных колебаний) для реакции дегидрирования ДМАБ (1 эквив. (*вверху*) и 5 эквив. (*внизу*) в присутствии **III-3**^{Tp} (*c* = 0.003 M), 298 К, ТГФ.

Рисунок 68. Кинетические кривые (изменения интенсивности полос соответствующих валентных колебаний) для реакции дегидрирования ДМАБ (5 эквив. (0.015М)) в присутствии **III-3**^{Ср} (0.003 М), 298 К, ТГФ.

В спектре ЯМР ¹Н в ТГФ-*d*⁸ образование ионной пары **III-3**^{тр} приводит к исчезновению гидридных сигналов δ_{WH} и δ_{PdH} двух исходных комплексов (-2.3 и -4.2 м.д., соответственно) (Рисунок 69). При добавлении 5 эквив. ДМАБ с течением времени появляются сигналы исходных гидридов (Рисунок 69), что согласуется с наблюдаемыми изменениями в ИК спектрах. Через 100 мин в спектре наблюдается только гидридный сигнал δ_{PdH} , интенсивность которого сильно увеличилась. Мониторинг спектров ЯМР ¹¹В показал падение сигнала исходного ДМАБ (δ_B -15.3) и рост сигнала продукта (Me₂NBH₂)₂ (δ_B 3.4), а также появление резонанса интермедиатного аминоборана Me₂N=BH₂ (δ_B 35.8) (Рисунок 70).

Рисунок 69. ЯМР ¹Н спектры **Ш-3**^{**Т**р} и мониторинг после добавления 5 эквив. ДМАБ, 290 К, ТГ Φ -*d*₈

На основании полученных ИК и ЯМР спектральных данных можно предположить следующий механизм каталитической реакции (Схема 47). Таким образом, впервые установлено, что биметаллический комплекс катализирует дегидрирование амин-боранов и показана принципиальная роль кислотного и осно́вного металлических центров в активации связей ВН и NH амин-борана.

Схема 47

3. Экспериментальная часть

Все работы проводились в инертной атмосфере с использованием техники Шленка и септумов. Коммерчески доступный аргон (99.9%) дополнительно очищался от следов кислорода и воды последовательным пропусканием через колонны с Ni/Cr катализатором и молекулярные сита 4Å. Гексан перегонялся над CaH₂. Хлористый метилен фирмы Acrus (для спектроскопии) очищался перегонкой над CaH₂ и хранился в отсутствие света. Тетрагидрофуран высушивался над бензофенонкетилом натрия. Толуол высушивался над натрием. Все абсолютированные растворители перегонялись непосредственно перед работой в атмосфере аргона. Дейтерированные растворители (Aldrich) дегазировались путем трехкратного замораживания-откачивания-размораживания, высушивались над молекулярными ситами и хранили в атмосфере аргона.

Объекты исследования и растворители

Гидридохлориды (^{*н*ви}РСР)IrH(Cl), (^{*н*ви}РСР)IrH(Cl)(CO) и (^{*н*ви}РСР)IrH₄ были синтезированы по известным методикам [123, 124]. Комплекс (^{*н*ви}РСN)IrH(Cl) был впервые синтезирован в рамках данного исследования в лаборатории совместно с коллегами в Институте металлоорганических и координационных соединений, г. Флоренции.

Синтез (^{1Bu}PCN)IrH(Cl). К комплексу [IrCl(COE)₂]₂ (0.148 g, 0.16 ммоль) добавляли ^{rBu}PCN(H) (0.100 g, 0.33 ммоль) в толуоле (7 мл) и полученную смесь кипятили с обратным холодильником 10-12 часов до появления темно-красной окраски раствора. Охлаждали раствор до комнатной температуры и затем путем удаления растворителя в вакууме масляного насоса получали твердый продукт бледно-красного цвета. Добавляли пентан и фильтровали с помощью стеклянного фильтра средней пористости, затем красный осадок несколько раз промывали пентаном и сушили на вакууме. Выход составил 87 % (0.150 г). Кристаллы, подходящие для PCA, были получены путем быстрого охлаждения горячего концентрированного раствора толуола.

Синтез (^{*Bu*}PCN)*IrH*(η^2 -*H*₂*BH*₂). К раствору (^{*Bu*}PCN)*IrH*(Cl) (0.175 g, 0.33 ммоль) в ТГФ (7 мл) добавляли суспензию NaBH₄ (0.125 g, 3.30 ммоль, 10 эквив.) в ТГФ (13 мл) и кипятили с обратным холодильником при интенсивном перемешивании в течение 3 часов. Полученный раствор охлаждали до комнатной температуры и фильтровали через слой целита. Растворитель удаляли на вукууме, а полученный твердый осадок промывали толуолом и еще раз фильтровали. Наконец, остатки толуола удаляли в вакууме, получая (^{*Bu*}PCN)*IrH*(η^2 -H₂BH₂) в виде твердого коричневого вещества с выходом 65% (0.110 г).

B качестве классических протонодоноров использовались продажные фторированные спирты (CF₃CH₂OH (T Φ Э); (CF₃)₂CHOH (Г Φ ИП); (CF₃)₃COH (П Φ ТБ)), которые предварительно очищались перегонкой в сухом аргоне. Перед использованием спирты дегазировали и в дальнейшем хранили в инертной атмосфере аргона. Индол использовали без предварительной очистки. Амин-бораны (Ме₃NBH₃, Ме₂NHBH₃, *t*BuNH₂BH₃, NH₃BH₃) очищали возгонкой в вакууме. В качестве оснований использовались ацетонитрил (MeCN), бензонитрил (PhCN), триэтиламин и очищались перегонкой над CaH₂ в атмосфере аргона. Пиридин, меченный изотопом ¹⁵N, был синтезирован по известной методике [125]. Продажный 2-гидроксиметилпиридин (2-ГМП) фирмы Acrus использовался без дополнительной очистки. Все жидкие реагенты хранились в атмосфере аргона. Замещенные фенолы (ПН Φ = p-NO₂-C₆H₄-OH, П $\Phi\Phi$ = p-F- C_6H_4 -OH, ПНАФ = p-NO₂-C₆H₄-N=N-C₆H₄-OH) очищали перекристаллизацией из спирта и методом возгонки в вакууме. Гидрид палладия (PCP)PdH (tBu PCP = 2,6-C₆H₃(CH₂PtBu₂)₂) был синтезирован по известной методике [126] в лаборатории проф. М. Перуццини, Институт металлоорганических и координационных соединений (ICCOM CNR), г. Флоренция, совместно с которым проводится данная работа. Для исследований гидридов переходных металлов, как доноров протона, использовали гидриды металлов LW(CO)₃H $(L = Cp = \eta^5 - C_5 H_5, Tp = (Pz)_3 BH)$, синтезированные по известным методикам [120, 127] из гексакарбонила вольфрама, очищенного методом возгонки в вакууме.

Спектральные исследования

ИК исследования. ИК спектральные измерения проводились на Фурье-спектрометре Nicolet 6700. Спектры соединений измерялись в растворах гексана, толуола, дихлорметана, тетрагидрофурана и пиридина в кюветах CaF_2 для высокочастотной области ($l = 0.04 \div 0.4$ см) и CsI для низкочастотной области ИК спектра (d = 0.1 см).

Концентрации веществ составляли $10^{-1} \div 10^{-4}$ М. Для низкотемпературных исследований растворов использовался криостат Carl Zeiss Jena, позволяющий работать в интервале температур от 80 до 500К, для охлаждения использовался поток жидкого азота. Модификация криостата позволяет переносить в кювету, находящуюся при нужной температуры, реагенты, предварительно приготовленные в атмосфере аргона при заданной температуре, без контакта с воздухом. Эксперименты проводились в интервале температур от 190 до 310 К с точностью установки ±1 К. Толщина кюветы подбиралась в зависимости от исследуемой области и концентраций реагентов.

Изучение образования водородной связи и переноса протона проводилось в области валентных колебаний карбонильных групп гидридов металлов (2100 ÷ 1700 см⁻¹) в

концентрациях (c = $10^{-4} \div 10^{-2}$ M); в области валентных колебаний МН-групп гидридов металлов (1800 ÷ 1700 см⁻¹) при концентрациях гидридов (c = $10^{-1} \div 10^{-2}$ M) в избытке оснований и кислот (c = $10 \div 10^{-1}$ M); в области валентных колебаний CN-групп пиридина (1550 ÷ 1650 см⁻¹) при концентрациях c= 10^{-1} M, в области валентных колебаний OH-групп спиртов ($3100 \div 3700$ см⁻¹) при концентрациях спиртов c = 10^{-3} M в избытке гидридов металлов (c = $10^{-2} \div 10^{-3}$ M). Изучения реакции дегидрирования амин-боранов проводилось по полосам валентных колебаний BH и NH-групп.

ЯМР-исследования. Спектры растворов регистрировали на спектрометре Bruker Avance II 300, 400 и 600 МГц в температурном диапазоне 190 – 300 К. Химические сдвиги ¹H определяли относительно остаточных протонов дейтерированных растворителей (¹H) и приводили в м.д. Химические сдвиги ³¹P{¹H} определяли относительно 85 % H₃PO₄. Спектры ЯМР ¹¹В реферировали относительно химического сдвига стандарта BF₃·OEt₂ (δ 0 м.д.). Измерение времени спин-решеточной релаксации T₁ проводили инверсионновозвратным методом с использованием стандартной 180-т-90 последовательности импульсов.

 $V\Phi$ -вид. исследования. Изучение реакции комплексообразования 5-координационных гидридохлоридов (^{rBu}PCP)IrH(Cl) и (^{rBu}PCN)IrH(Cl) с основаниями, а также процесса переноса протона к гидриду палладия (PCP)PdH от (паранитрофенил)азофенола (ПНАФ) проводили на спектрометре Varian Cary50 в УФ и видимой областях ($\lambda = 250 - 600$ нм). Суммарная полоса поглощения (^{rBu}PCP)IrH(Cl) и (^{rBu}PCN)IrH(Cl) соответствует трем d→d* переходам. Полоса поглощения ПНАФ, соответствующая единственному разрешенному переходу $\pi \rightarrow \pi^*$, попадает в регистрируемую часть спектра ($\lambda = 380$ нм). Кинетические эксперименты проводили при концентрациях фенола $10^{-4} \div 10^{-3}$ М и гидрида палладия $10^{-3} \div 10^{-2}$ М в толуоле и ТГФ в кювете CaF₂ I = 0.1 см. УФ-видимые спектры регистрировали каждые 2-10 мин до полного завершения процесса (отсутствие изменений в спектре в течение 30 мин). Для низкотемпературных исследований также использовали описанный выше криостат Carl Zeiss Jena.

Рентгено-структурный анализ.

Рентгеноструктурные исследования комплекса (^{*t*Bu}PCN)IrH(Cl) (**II-1**) были выполнены в Институте Металлоорганических Соединений Национального Центра Исследований Италии (ICCOM CNR, г. Флоренция) на дифрактометре Oxford-Diffraction XcaliburPX CCD с источником излучения Cu K_α (λ = 1.5418 Å). Обработку
экспериментальных данных и расчёты по расшифровке и уточнению кристаллических структур проводили с использованием программ CrysAlis CCD, CrysAlis RED, ABSPACK, SHELXL-2014. Основные кристаллографические данные приведены в Таблица 16. Структуры расшифрованы прямыми методами и уточнены полноматричным МНК по F^2_{hkl} с анизотропными тепловыми параметрами для всех неводородных атомов. Атом гидрида (H) был определен из карты остаточной электронной плотности и был уточнен с изотропными тепловыми параметрами (1.5 $U_{eq}(Ir)$). Остальные атомы водорода выявлены из разностных рядов Фурье и уточнены с изотропными тепловыми параметрами или в модели «наездника» с нормализацией на идеальные нейтронографические расстояния.

	II-1		II-1
Формула	C ₁₈ H ₂₇ Cl Ir N ₂ P	Z	4
Молек. вес	530.03	D (мг/м ³)	1.929
Температура	100(2) K	F(000)	1032
Крист. система	Моноклинная	Размер крист. (мм ³)	0.01 x 0.01 x 0.02
Простр. группа	$P 2_1/c$	θинтервал (°)	3.980 ÷ 70.982
<i>a</i> (Å)	11.172(5)	Кол-во отражений	16405
<i>b</i> (Å)	7.048(5)	Независ. отражения	3425 [R(int)=0.1120]
<i>c</i> (Å)	23.317(5)	Параметры	211
α (°)	90	R ₁	0.0823
β (°)	96.223(5)	wR ₂	0.2472
γ (°)	90	GOF	1.065
$V(Å^3)$	1825.2(16)	$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} (e \text{\AA}^{-3})$	5.963, -4.073

Таблица 16. Кристаллографические данные для компелекса II-1.

Каталитические исследования.

В стандартном эксперименте ДМАБ (0.01 g, 0.28 mmol) растворяли в 0.6 мл толуола в круглодонной колбе на 10 мл и закрывали плотно прилегающей резиновой септой. Необходимое количество (^{*r*Bu}PCN)IrHCl (2-10 мольн. %) шприцем переносили к раствору ДМАБ при перемешивании. Время начинали отсчитывать с введения катализатора. Водород собирали в заполненные водой стеклянные бюретки, соединенные тефлоновой трубкой. Объем выделяющегося газа замеряли по уровню вытесняемой воды из бюретки с разной периодичностью (1 мин. первые 0.5 часа) до окончания реакции. Мониторинг выделения водорода из NH₃BH₃ (AE) проводился с помощью прибора *the Man on the Moon 203 X102 kit*. В стандартном эксперименте 5.3 мг (^{*t*Bu}PCN)IrHCl (0.01 ммоль) помещали в инертной атмосфере в двугорлую круглодонную колбу на 40 мл, соединенную с трехходовым клапаном. Комплекс растворяли в 1 мл TГФ и затем шприцем добавляли к нему 2 мл раствора AE (50 эквив.) в TГФ. Полученную смесь оставляли при 298К при постоянном перемешивании. Затем клапан открывали на датчик давления, соединенный посредством беспроводной сети к программному обеспечению, которое выводило на компьютер в режиме «online» зависимость давления от времени в течение 24 часов. Конечные кинетические данные реферировали с учетом давления TГФ в холостом эксперименте при 298К и использовали при расчете количества эквивалентов H₂. Расчет выполнялся в приближении идеального газа (PV = nRT).

Квантово-химические расчеты (DFT).

Квантово-химические расчеты были проведены с.н.с. к.х.н. Филипповым О.А. (Лаборатория гидридов металлов ИНЭОС РАН). Исследования реакции с (^{*n*Bu}PCP)PdH проводились с помощью программного комплекса Gaussian03 [128] и Gaussian09 [129] с использованием теории функционала плотности (DFT). Все расчеты проводились для реальных систем.

Оптимизацию геометрии гидридов металлов (^{rBu}PCP)МН как акцепторов протона проводили с использованием функционалов B3LYP [130, 131] и M06 [132] с использованием псевдопотенциалов и соответствующих базисов SDD [133-136] с дополнительной f-функцией [137] для атомов переходных металлов, базисов 6-31++G(d,p) для гидридного лиганда и OH группы протонодонора, и 6-31G(d,p) для остальных атомов.

При исследовании взаимодействия между двумя гидридами металлов использовался функционал M06 [132] с использованием псевдопотенциалов и соответствующих базисов LanL2DZ [138, 139] для атомов W, Pd и P, с дополнительными поляризационными fфункциями [137] для атомов металлов и d-функцией для атома P [140]; 6-31G* для атомов C, OH и NO₂ для ПНФ; 6-31++G(d,p) для атомов H гидридных лигандов. Эффект растворителя (ТГФ, $\varepsilon = 7.43$) учитывался с помощью континуальной теории реактивного поля (PCM-UA0) [141, 142].

Исследования (^{нви}РСХ)IrHCl проводились с помощью Gaussian09 [129] с использованием функционала M06 [132]. Описание атома иридия проводили с использованием базиса SDD с соответствующим псевдопотенциалом для остовных электронов [133-136] с дополнительной f-функцией (SDD(f)) [137]. Атомы С ароматических колец и P пинцетных лигандов, лиганды H, Cl и CO, BH и NH группы

ДМАБ, ОН-группа протонодонора, а также пиридин (Ру) и ацетонитрил были описаны 6-31++G(d,p) базисным набором [143-146], в то время как все остальные атомы описывались 6-31G [146]. Структуры компелксов с кислотами и основаниями оптимизировались в гаховой фазе, структуры реагенетов, интермедиатов и продуктов каталитического цикла оптимизировались в толуоле ($\varepsilon = 2.3741$) без каких либо ограничений, с использованием SMD модели растворителя [147].

Наличие минимума на потенциальной поверхности определялось отсутствием отрицательных частот в расчете. Переходные состояния характеризовались одной отрицательной частотой, по форме колебания соответствующей координате реакции. Соответствие переходных состояний реагентам и продуктам подтверждалось с помощью расчета внутренней координаты реакции (IRC), которое проводилось в двух направлениях, прямом и обратном, начиная от переходного состояния [148, 149]. Скалирующие множители к рассчитанным значениям частот колебаний не применялись.

Для расчета зарядов на атомах и заселенностей связей использовался метод орбиталей (NBO) [150, 151]. Топологический естественных анализ функции распределения электронной плотности $\rho(r)$ по методу «Атомы в молекулах» (AM) выполнен с использованием программного пакета AIMALL [152], основываясь на волновой функции, полученной в DFT расчете. Энергия межмолекулярных взаимодействий рассчитана с использованием корреляции между энергией связи и значением функционала плотности потенциальной энергии V(r) в соответствующей критической точке (3,-1) по формуле (7) [153, 154]:

 $E_{\text{H-CBR3M}} = 0.5 \cdot V(r) \tag{7}$

Эллиптичность связи є рассчитывали по формуле (8):

 $\varepsilon = (\lambda_1 / \lambda_2 - 1), \tag{8}$

где λ₁ и λ₂ – отрицательные значения Гессиана электронной плотности [155-157].

4. Выводы

- Впервые зафиксировано образование водородной связи ОН- и NH-кислот с 5- и 6-ти координационными гидридохлоридами иридия, определены термодинамические характеристики водородно-связанных комплексов. Основным центром связывания является хлоридный лиганд, протоноакцепторная способность которого увеличивается в ряду (^{rBu}PCP)IrH(Cl)(CO) < (^{rBu}PCP)IrH(Cl) < (^{rBu}PCN)IrH(Cl).
- 2. Координация органических оснований (нитрилы и пиридины) к (^{*t*Bu}PCP)IrH(Cl) и (^{*t*Bu}PCN)IrHCl происходит предпочтительно в аксиальное положение к гидриду, что приводит к удлинению связи Ir-Cl, возрастающего при более сильном связывании с L.
- Комплексы иридия (^{tBu}PCP)IrH(Cl) и (^{tBu}PCN)IrH(Cl) проявляют каталитическую активность в реакции дегидрирования амин-боранов. Большая каталитическая активность комплекса (^{tBu}PCN)IrH(Cl) связана с меньшими стерическими затруднениями пинцетного лиганда и его более слабыми донорными свойствами.
- 4. Впервые охарактеризованы *in situ* металлсодержащие интермедиаты каталитического дегидрирования амин-боранов комплексами (^{tBu}PCP)IrH(Cl) и (^{tBu}PCN)IrH(Cl). Предложен принципиально новый механизм дегидрирования диметиламин-борана, и показано, что ключевой стадией является активация B-H и N-H связей. С [(^{tBu}PCP)Ir] реализуется концертный перенос протона и гидрида, а в случае [(^{tBu}PCN)Ir] замена лиганда открывает новый путь реакции постадийный протон-гидридный перенос.
- Установлены условия образования и охарактеризованы диводородные связи (^{tBu}PCP)PdH со спиртами, фенолами и МН-кислотами, получены спектральные и термодинамические (ΔH°, ΔS°) характеристики этих связей и расстояния H····H в ДВС комплексах.
- 6. Показано, что в качестве интермедиатов реакции (^{tBu}PCP)PdH и LW(CO)₃H (L = Cp, Tp) образуются ДВС комплексы и комплексы с молекулярным водородом η¹ и η² типа. Продуктом реакции является биметаллическая ионная пара [LW(CO)₂(μ-CO)…Pd(^{tBu}PCP)], способная обратимо присоединять молекулярный водород.
- 7. Показано, что энергетический барьер переноса протона в системе (^{tBu}PCP)MH/LW(CO)₃H уменьшается при переходе от Ni к Pd, а при переходе от Cp- к Тр-лиганду увеличивается термодинамическая стабильность ионных интермедиатов.
- Впервые показано, что биметаллическая контактная ионная пара [LW(CO)₂(µ-CO)…Pd(^{tBu}PCP)] может катализировать дегидрирование диметиламин-борана. Продемонстрирована принципиальная роль биметаллической системы в активации связей ВН и NH амин-борана.

5. Список литературы

 [1] Jeffrey, G.A. An Introduction to Hydrogen Bonding. / G.A. Jeffrey // New York. Oxford University Press. – 1997. – P

[2] G.C. Pimentel, A.L. McClellan. "The Hydrogen Bond" // Book "The Hydrogen Bond" // EditorSan Francisco: WH Freeman, 1960.

[3] L. Pauling. The Nature of the Chemical Bond and the Structure of Molecules and Crystals // Book The Nature of the Chemical Bond and the Structure of Molecules and Crystals / EditorCornell University Press, Ithaca, 1939.

[4] Scheiner, S. Hydrogen Bonding: A Theoretical Perspective. / S. Scheiner // Oxford University Press on Demand.– 1997. – P

 [5] Gilli, G. The Nature of the Hydrogen Bond: Outline of a Comprehensive Hydrogen Bond Theory. International Union of Crystallography Monographs on Crystallography /G. Gilli, P.
 Gilli // Oxford University Press.- 2009 -T. 23: International Union of Crystallography Monographs on Crystallography -P. 336.

[6] Levina, V.A. Neutral Transition Metal Hydrides as Acids in Hydrogen Bonding and Proton Transfer: Media Polarity and Specific Solvation Effects / V.A. Levina, O.A. Filippov, E.I. Gutsul, N.V. Belkova, L.M. Epstein, A. Lledos, E.S. Shubina // Journal of the American Chemical Society. – 2010. – V. 132. – P. 11234-11246.

[7] Levina, V.A. Acid–Base Interaction between Transition-Metal Hydrides: Dihydrogen Bonding and Dihydrogen Evolution / V.A. Levina, A. Rossin, N.V. Belkova, M.R. Chierotti, L.M. Epstein, O.A. Filippov, R. Gobetto, L. Gonsalvi, A. Lledós, E.S. Shubina, F. Zanobini, M. Peruzzini // Angewandte Chemie. – 2011. – V. 123. – P. 1403-1406.

[8] Belkova, N.V. Intermolecular Hydrogen Bonding between Neutral Transition Metal Hydrides (H5-C5h5)M(Co)3h (M = Mo, W) and Bases / N.V. Belkova, E.I. Gutsul, O.A. Filippov, V.A. Levina, D.A. Valyaev, L.M. Epstein, A. Lledós, E.S. Shubina // J. Am. Chem. Soc. – 2006. – V. 128. – P. 3486-3487.

[9] Vinogradova, L.E. A New Type of Hydrogen Bonding: Intermolecular H-Bond with Participation of a Transition-Metal Atom as an Electron Donor / L.E. Vinogradova, A.Z. Kreindlin, L.A. Leites, I.T. Chizhevskii, E.S. Shubina, L.M. Epshtein // Metalloorg. Khim. – 1990. – V. 3. – P. 1192.

[10] Shubina, E.S. Regularities in Formation of Intramolecular Hydrogen-Bonds with the Metal Atom .1. Alpha-Metallocenylcarbinols of the Iron Subgroup / E.S. Shubina, L.M. Epstein // Journal of Molecular Structure. – 1992. – V. 265. – P. 367-384. [11] Lough, A.J. Switching on and Off a New Intramolecular Hydrogen-Hydrogen Interaction and the Heterolytic Splitting of Dihydrogen. Crystal and Molecular Structure of [Ir {H (. Eta. 1-Sc5h4nh)} 2 (Pcy3) 2] Bf4. Cntdot. 2.7 Ch2cl2 / A.J. Lough, S. Park, R. Ramachandran, R.H. Morris // Journal of the American Chemical Society. – 1994. – V. 116. – P. 8356-8357.

[12] Lee, J. An Unusual Type of H...H Interaction-Ir-H...Ho and Ir-H...Hn Hydrogen-Bonding and Its Involvement in Sigma-Bond Metathesis / J. Lee, E. Peris, A.L. Rheingold, R.H. Crabtree // Journal of the American Chemical Society. – 1994. – V. 116. – P. 11014-11019.

[13] Shubina, E.S. Spectroscopic Evidence for Intermolecular M-H...H-or Hydrogen Bonding: Interaction of $Wh(Co)_2(No)L_2$ Hydrides with Acidic Alcohols / E.S. Shubina, N.V. Belkova, A.N. Krylov, E.V. Vorontsov, L.M. Epstein, D.G. Gusev, M. Niedermann, H. Berke // J. Am. Chem. Soc. – 1996. – V. 118. – P. 1105-1112.

[14] Bakhmutova, E.V. First Investigation of Non-Classical Dihydrogen Bonding between an Early Transition-Metal Hydride and Alcohols: Ir, Nmr, and Dft Approach / E.V. Bakhmutova, V.I. Bakhmutov, N.V. Belkova, M. Besora, L.M. Epstein, A. Lledos, G.I. Nikonov, E.S. Shubina, J. Tomas, E.V. Vorontsov // Chem-Eur J. – 2004. – V. 10. – P. 661-671.

[15] Belkova, N.V. Interaction of the [Gah4](-) Anion with Weak Xh Acids - a Spectroscopic and Theoretical Study / N.V. Belkova, O.A. Filippov, A.M. Filin, L.N. Teplitskaya, Y.V. Shmyrova, V.V. Gavrilenko, L.M. Golubinskaya, V.I. Bregadze, L.M. Epstein, E.S. Shubina // European Journal of Inorganic Chemistry. – 2004. – V. 10.1002/ejic.200400084 – P. 3453-3461.
[16] Epstein, L.M. New Types of Hydrogen Bonding in Organometallic Chemistry / L.M. Epstein, E.S. Shubina // Coord. Chem. Rev. – 2002. – V. 231. – P. 165-181.

[17] Gründemann, S. Solvent-Assisted Reversible Proton Transfer within an Intermolecular Dihydrogen Bond and Characterization of an Unstable Dihydrogen Complex / S. Gründemann, S. Ulrich, H.-H. Limbach, N.S. Golubev, G.S. Denisov, L.M. Epstein, S. Sabo-Etienne, B. Chaudret // Inorg. Chem. – 1999. – V. 38. – P. 2550-2551.

[18] Epstein, L.M. Unusual Hydrogen Bonds with a Hydride Atom in Boron Hydrides Acting as Proton Acceptor. Spectroscopic and Theoretical Studies / L.M. Epstein, E.S. Shubina, E.V. Bakhmutova, L.N. Saitkulova, V.I. Bakhmutov, A.L. Chistyakov, I.V. Stankevich // Inorganic Chemistry. – 1998. – V. 37. – P. 3013-3017.

[19] Иогансен, А.В. Правило Призведения Кислотно-Основных Функций Молекул При Образовании Водородных Связей В Растворе В Ccl₄ / А.В. Иогансен // Теор. эксп. химия. – 1971. – V. 7. – Р. 302-311.

[20] Иогансен, А.В. Оценка Влияния Среды На Свойства Водородных Связей По Правилу Произведения Кислотно-Основных Функций Молекул / А.В. Иогансен // Теор. эксп. химия. – 1971. – V. 7. – Р. 312-317.

[21] Iogansen, A.V. Direct Proportionality of the Hydrogen Bonding Energy and the Intensification of the Stretching N(Xh) Vibration in Infrared Spectra / A.V. Iogansen // Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. – 1999. – V. 55. – P. 1585-1612.

[22] L.M. Epstein, N.V. Belkova, E.S. Shubina. Dihydrogen Bonded Complexes and Proton Transfer to Hydride Ligands by Spectral (Ir, Nmr) Studies // Recent Advances in Hydride Chemistry / Peruzzini, M., Poli, R. – Amsterdam: Elsevier, 2001. – C. 391-418.

[23] Golub, I.E. Dimerization Mechanism of Bis(Triphenylphosphine)Copper(I)
Tetrahydroborate: Proton Transfer Via a Dihydrogen Bond / I.E. Golub, O.A. Filippov, E.I.
Gutsul, N.V. Belkova, L.M. Epstein, A. Rossin, M. Peruzzini, E.S. Shubina // Inorganic
Chemistry. - 2012. - V. 51. - P. 6486-6497.

[24] Golub, I.E. Dihydrogen Bond Intermediated Alcoholysis of Dimethylamine–Borane in Nonaqueous Media / I.E. Golub, E.S. Gulyaeva, O.A. Filippov, V.P. Dyadchenko, N.V. Belkova, L.M. Epstein, D.E. Arkhipov, E.S. Shubina // The Journal of Physical Chemistry A. – 2015. – V. 119. – P. 3853-3868.

[25] Desrosiers, P.J. Assessment of the T1 Criterion for Distinguishing between Classical and Nonclassical Transition-Metal Hydrides - Hydride Relaxation Rates in Tris(Triarylphosphine)Osmium Tetrahydrides and Related Polyhydrides / P.J. Desrosiers, L.H. Cai, Z.R. Lin, R. Richards, J. Halpern // Journal of the American Chemical Society. – 1991. – V. 113. – P. 4173-4184.

[26] Bakhmutov, V.I. Dihydrogen Bonds: Principles, Experiments and Applications. / V.I.
 Bakhmutov // Hoboken, New Jersey. John Willey & Sons, Inc. – 2008. – P. 241.

[27] Chu, H.S. Intramolecular N-H...H-Ru Proton-Hydride Interaction in Ruthenium Complexes with (2-(Dimethylamino)Ethyl)Cyclopentadienyl and (3-(Dimethylamino)Propyl)Cyclopentadienyl Ligands. Hydrogenation of Co2 to Formic Acid Via the N-H...H-Ru Hydrogen-Bonded Complexes / H.S. Chu, C.P. Lau, K.Y. Wong, W.T. Wong // Organometallics. – 1998. – V. 17. – P. 2768-2777.

[28] Ayllon, J.A. Proton Transfer in Aminocyclopentadienyl Ruthenium Hydride Complexes /
 J.A. Ayllon, S.F. Sayers, S. Sabo-Etienne, B. Donnadieu, B. Chaudret, E. Clot //
 Organometallics. – 1999. – V. 18. – P. 3981-3990.

[29] Lam, Y.F. Attenuation of Intramolecular Ru-H Center Dot Center Dot Center Dot H-N Dihydrogen Bonding in Aminocyclopentadienyl Ruthenium Hydride Complexes Containing Phosphite Ligands / Y.F. Lam, C.Q. Yin, C.H. Yeung, S.M. Ng, G.C. Jia, C.P. Lau // Organometallics. – 2002. – V. 21. – P. 1898-1902.

[30] Belkova, N.V. Intermolecular Hydrogen Bonding of $Reh_2(Co)(No)L_2$ Hydrides with Perfluoro-Tert-Butyl Alcohol. Competition between M–H…H–or and M–No…H–or Interactions / N.V. Belkova, E.S. Shubina, A.V. Ionidis, L.M. Epstein, H. Jacobsen, A. Messmer, H. Berke // Inorg. Chem. – 1997. – V. 36. – P. 1522-1525.

[31] Messmer, A. Probing Regioselective Intermolecular Hydrogen Bonding to [Re(Co)H₂(No)(Pr₃)₂] Complexes by Nmr Titration and Equilibrium Nmr Methodologies / A. Messmer, H. Jacobsen, H. Berke // Chemistry - A European Journal. – 1999. – V. 5. – P. 3341-3349.

[32] Bakhmutov, V.I. In-Depth Nmr and Ir Study of the Proton Transfer Equilibrium between
[{(Mec(Ch2pph2)(3)}Ru(Co)H-2] and Hexafluoroisopropanol / V.I. Bakhmutov, E.V.
Bakhmutova, N.V. Belkova, C. Bianchini, L.M. Epstein, D. Masi, M. Peruzzini, E.S. Shubina,
E.V. Vorontsov, F. Zanobini // Can J Chem. – 2001. – V. 79. – P. 479-489.

[33] Sabo-Etienne, S. Quantum Mechanical Exchange Coupling in Polyhydride and Dihydrogen Complexes / S. Sabo-Etienne, B. Chaudret // Chem. Rev. – 1998. – V. 98. – P. 2077.

[34] Jimenez-Tenorio, M. Proton-Transfer Reactions to Half-Sandwich Ruthenium Trihydride Complexes Bearing Hemilabile P,N Ligands: Experimental and Density Functional Theory Studiest / M. Jimenez-Tenorio, M.C. Puerta, P. Valerga, S. Moncho, G. Ujaque, A. Lledos // Inorganic Chemistry. – 2010. – V. 49. – P. 6035-6057.

[35] Donghi, D. Nmr Investigation of the Dihydrogen-Bonding and Proton-Transfer Equilibria between the Hydrido Carbonyl Anion [Hre2(Co)(9)](-) and Fluorinated Alcohols / D. Donghi, T. Beringhelli, G. D'Alfonso, M. Mondini // Chem-Eur J. – 2006. – V. 12. – P. 1016-1025.

[36] Proton Transfer in P-Nitrophenol-Triethylamine System in Aprotic Solvents / H. Baba, A. Matsuyama, H. Kokubun // Spectrochimica Acta Part A: Molecular Spectroscopy. – 1969. – V. 25. – P. 1709-1722.

[37] Belkova, N.V. Experimental and Computational Studies of Hydrogen Bonding and Proton Transfer to Cp*Fe(Dppe)H / N.V. Belkova, E. Collange, P.A. Dub, L.M. Epstein, D.A. Lemenovskii, A. Lledós, O. Maresca, F. Maseras, R. Poli, P.O. Revin, E.S. Shubina, E.V. Vorontsov // Chemistry - A European Journal. – 2005. – V. 11. – P. 873-888.

[38] Belkova, N.V. Specific and Non-Specific Influence of the Environment on Dihydrogen Bonding and Proton Transfer to Ruh2{P(Ch2ch2pph2)(3)} / N.V. Belkova, T.N. Gribanova, E.I. Gutsul, R.M. Minyaev, C. Bianchini, M. Peruzzini, F. Zanobini, E.S. Shubina, L.M. Epstein // J. Mol. Struct. – 2007. – V. 844. – P. 115-131.

[39] Krogsrud, S. Hydrogenation of Aryldiazenido Complexes - Synthesis and Structure of
Trans-Hydrido(AcetonePhenylhydrazone)Bis(Triphenylphosphine)Platinum(Ii)

Tetrafluoroborate / S. Krogsrud, L. Toniolo, U. Croatto, J.A. Ibers // Journal of the American Chemical Society. – 1977. – V. 99. – P. 5277-5284.

[40] Parthasarathi, R. Hydrogen Bonding without Borders: An Atoms-in-Molecules Perspective / R. Parthasarathi, V. Subramanian, N. Sathyamurthy // J. Phys. Chem. A. – 2006. – V. 110. – P. 3349-3351.

[41] Sherif, S.A. Handbook of Hydrogen Energy. / S.A. Sherif, D.Y. Goswami, E.L. Stefanakos,
 A. Steinfeld // CRC Press. – 2014. – P. 1058.

[42] Stock, A. Borwasserstoffe, Vi.: Die Einfachsten Borhydride / A. Stock, E. Kuss // Berichte der deutschen chemischen Gesellschaft (A and B Series). – 1923. – V. 56. – P. 789-808.

[43] Stock, A. Tensimetrische Molekulargewichts-Bestimmungen Mit Flüssigem Ammoniak Als Lösungsmittel / A. Stock, E. Pohland // Berichte der deutschen chemischen Gesellschaft (A and B Series). – 1925. – V. 58. – P. 657-661.

[44] Shore, S.G. The Crystalline Compound Ammonia-Borane, H3nbh3 / S.G. Shore, R.W. Parry // Journal of the American Chemical Society. – 1955. – V. 77. – P. 6084-6085.

[45] Jepsen, L.H. Boron–Nitrogen Based Hydrides and Reactive Composites for Hydrogen Storage / L.H. Jepsen, M.B. Ley, Y.-S. Lee, Y.W. Cho, M. Dornheim, J.O. Jensen, Y. Filinchuk, J.E. Jørgensen, F. Besenbacher, T.R. Jensen // Materials Today. – 2014. – V. 17. – P. 129-135.

[46] Richardson, T. Unconventional Hydrogen Bonds: Intermolecular B-H...H-N Interactions / T. Richardson, S. de Gala, R.H. Crabtree, P.E. Siegbahn // Journal of the American Chemical Society. – 1995. – V. 117. – P. 12875-12876.

[47] Hu, M.G. Thermal-Decomposition of Ammonia-Borane / M.G. Hu, R.A. Geanangel, W.W.
 Wendlandt // Thermochim Acta. – 1978. – V. 23. – P. 249-255.

[48] Kumar, D. Dehydrogenation of Ammonia Borane with Catalytic Thermal Decomposition /
D. Kumar, H. Mangalvedekar, S. Mahajan // International Journal of Advancements in Research
& Technology. – 2013. – V. 7. – P. 478-483.

[49] Liu, D. High N-Content Holey Few-Layered Graphene Electrocatalysts: Scalable Solvent-Less Production / D. Liu, W.W. Lei, D. Portehault, S. Qina, Y. Chen // J Mater Chem A. – 2015.
– V. 3. – P. 1682-1687.

[50] Green, I.G. / K.M. Johnson, B.P. Roberts // J. Chem. Soc, Perkin Trans. – 1989. – V. 2. – P. 1963.

[51] Jaska, C.A. Rhodium-Catalyzed Formation of Boron–Nitrogen Bonds: A Mild Route to Cyclic Aminoboranes and Borazines / C.A. Jaska, K. Temple, A.J. Lough, I. Manners // Chemical Communications. – 2001. – V. – P. 962-963.

[52] A. Maeland, M. Peruzzini, R. Poli. Recent Advances in Hydride Chemistry // Book Recent Advances in Hydride Chemistry / EditorElsevier Science B, Amsterdam, The Netherlands, 2001.

[53] Kubas, G.J. Characterization of the 1st Examples of Isolable Molecular-Hydrogen Complexes, Mo(Co)3(Pcy3)2(H2), W(Co)3(Pcy3)2(H2),Mo(Co)3 (Pi-Pr3)2(H2),W(Co)3(Pi-Pr3)2(H2) - Evidence for a Side-on Bonded H-2 Ligand / G.J. Kubas, R.R. Ryan, B.I. Swanson, P.J. Vergamini, H.J. Wasserman // Journal of the American Chemical Society. – 1984. – V. 106. – P. 451-452.

[54] Fernandez, E. Synthesis and Application of Organoboron Compounds Preface / E. Fernandez, A. Whiting // Top Organometal Chem. – 2015. – V. 49. – P. 1-334.

[55] Shubina, E.S. Novel Types of Hydrogen Bonding with Transition Metal P-Complexes and Hydrides / E.S. Shubina, N.V. Belkova, L.M. Epstein // J. Organomet. Chem. – 1997. – V. 536-537. – P. 17-29.

[56] Diverse World of Unconventional Hydrogen Bonds / N.V. Belkova, E.S. Shubina, L.M.
 Epstein // Acc. Chem. Res. - 2005. - V. 38. - P. 624-631.

[57] Belkova, N.V. Hydrogen and Dihydrogen Bonds in the Reactions of Metal Hydrides / N.V.
Belkova, L.M. Epstein, O.A. Filippov, E.S. Shubina // Chemical Reviews. – 2016. – V. 116. – P.
8545-8587.

[58] Alcaraz, G. Coordination and Dehydrogenation of Amine–Boranes at Metal Centers / G. Alcaraz, S. Sabo-Etienne // Angewandte Chemie International Edition. – 2010. – V. 49. – P. 7170-7179.

[59] Chaplin, A.B. Amine- and Dimeric Amino-Borane Complexes of the {Rh((Ppr3)-Pr-I)(2)}(+) Fragment and Their Relevance to the Transition-Metal-Mediated Dehydrocoupling of Amine-Boranes / A.B. Chaplin, A.S. Weller // Inorganic Chemistry. – 2010. – V. 49. – P. 1111-1121.

[60] Sewell, L.J. Dehydrocoupling of Dimethylamine Borane Catalyzed by Rh(Pcy3)(2)H2cl /
L.J. Sewell, M.A. Huertos, M.E. Dickinson, A.S. Weller, G.C. Lloyd-Jones // Inorganic
Chemistry. – 2013. – V. 52. – P. 4509-4516.

[61] Tang, C.Y. Dehydrogenation of Saturated Cc and Bn Bonds at Cationic N-Heterocyclic Carbene Stabilized M(Iii) Centers (M = Rh, Ir) / C.Y. Tang, A.L. Thompson, S. Aldridge // Journal of the American Chemical Society. -2010. - V. 132. - P. 10578-10591.

[62] Tang, C.Y. Rhodium and Iridium Aminoborane Complexes: Coordination Chemistry of Bn Alkene Analogues / C.Y. Tang, A.L. Thompson, S. Aldridge // Angew Chem Int Edit. – 2010. – V. 49. – P. 921-925.

[63] Muhammad, S. Dehydrogenation of a Tertiary Amine-Borane by a Rhenium Complex / S. Muhammad, S. Moncho, E.N. Brothers, A.A. Bengali // Chemical Communications. – 2014. – V. 50. – P. 5874-5877.

[64] Sewell, L.J. Reversible C-H Activation of a (Pbubu2)-Bu-T-Bu-I Ligand to Reveal a Masked 12 Electron [Rh(Pr3)(2)](+) Cation / L.J. Sewell, A.B. Chaplin, J.A.B. Abdalla, A.S. Weller // Dalton T. – 2010. – V. 39. – P. 7437-7439.

[65] Sewell, L.J. Development of a Generic Mechanism for the Dehydrocoupling of Amine-Boranes: A Stoichiometric, Catalytic, and Kinetic Study of H3b Center Dot Nme2h Using the [Rh(Pcy3)(2)](+) Fragment / L.J. Sewell, G.C. Lloyd-Jones, A.S. Weller // Journal of the American Chemical Society. – 2012. – V. 134. – P. 3598-3610.

[66] Dallanegra, R. Bis(Sigma-Amine-Borane) Complexes: An Unusual Binding Mode at a Transition-Metal Center / R. Dallanegra, A.B. Chaplin, A.S. Weller // Angew Chem Int Edit. – 2009. – V. 48. – P. 6875-6878.

[67] Douglas, T.M. Monomeric and Oligomeric Amine-Borane Sigma-Complexes of Rhodium. Intermediates in the Catalytic Dehydrogenation of Amine-Boranes / T.M. Douglas, A.B. Chaplin, A.S. Weller, X.Z. Yang, M.B. Hall // Journal of the American Chemical Society. – 2009. – V. 131. – P. 15440-15456.

[68] Butera, V. The Role of Chelating Phosphine Rhodium Complexes in Dehydrocoupling Reactions of Amine-Boranes: A Theoretical Investigation Attempting to Rationalize the Observed Behaviors / V. Butera, N. Russo, E. Sicilia // Acs Catal. – 2014. – V. 4. – P. 1104-1113.

[69] Dallanegra, R. Tuning the [L2rh Center Dot Center Dot Center Dot H3b Center Dot Nr3](+) Interaction Using Phosphine Bite Angle. Demonstration by the Catalytic Formation of Polyaminoboranes / R. Dallanegra, A.P.M. Robertson, A.B. Chaplin, I. Manners, A.S. Weller // Chemical Communications. – 2011. – V. 47. – P. 3763-3765.

[70] Adams, G.M. Dehydropolymerization of H3b·Nmeh2 to Form Polyaminoboranes Using [Rh(Xantphos-Alkyl)] Catalysts / G.M. Adams, A.L. Colebatch, J.T. Skornia, A.I. McKay, H.C. Johnson, G.C. Lloyd–Jones, S.A. Macgregor, N.A. Beattie, A.S. Weller // Journal of the American Chemical Society. – 2018. – V. 140. – P. 1481-1495.

[71] Pal, S. Dehydrogenation of Dimethylamine–Borane Catalyzed by Half-Sandwich Ir and Rh Complexes: Mechanism and the Role of Cp* Noninnocence / S. Pal, S. Kusumoto, K. Nozaki // Organometallics. – 2018. – V. 37. – P. 906-914.

[72] Stevens, C.J. [Ir(Pcy3)(2)(H)(2)(H2b-Nme2)](+) as a Latent Source of Aminoborane: Probing the Role of Metal in the Dehydrocoupling of H3b Center Dot Nme2h and Retrodimerisation of [H2bnme2](2) / C.J. Stevens, R. Dallanegra, A.B. Chaplin, A.S. Weller, S.A. Macgregor, B. Ward, D. McKay, G. Alcaraz, S. Sabo-Etienne // Chem-Eur J. – 2011. – V. 17. – P. 3011-3020. [73] Johnson, H.C. Catching the First Oligomerization Event in the Catalytic Formation of Polyaminoboranes: H3b·Nmehbh2·Nmeh2 Bound to Iridium / H.C. Johnson, A.P.M. Robertson, A.B. Chaplin, L.J. Sewell, A.L. Thompson, M.F. Haddow, I. Manners, A.S. Weller // Journal of the American Chemical Society. – 2011. – V. 133. – P. 11076-11079.

[74] Kumar, A. Multiple Metal-Bound Oligomers from Ir-Catalysed Dehydropolymerisation of H 3 B[.] Nh 3 as Probed by Experiment and Computation / A. Kumar, H.C. Johnson, T.N. Hooper, A.S. Weller, A.G. Algarra, S.A. Macgregor // Chemical Science. – 2014. – V. 5. – P. 2546-2553.
[75] Chen, X. The Roles of Dihydrogen Bonds in Amine Borane Chemistry / X. Chen, J.-C. Zhao, S.G. Shore // Accounts of Chemical Research. – 2013. – V. 46. – P. 2666-2675.

[76] Denney, M.C. Efficient Catalysis of Ammonia Borane Dehydrogenation / M.C. Denney, V.
Pons, T.J. Hebden, D.M. Heinekey, K.I. Goldberg // Journal of the American Chemical Society.
2006. – V. 128. – P. 12048-12049.

[77] Paul, A. Catalyzed Dehydrogenation of Ammonia–Borane by Iridium Dihydrogen Pincer Complex Differs from Ethane Dehydrogenation / A. Paul, C.B. Musgrave // Angewandte Chemie International Edition. – 2007. – V. 46. – P. 8153-8156.

[78] Hebden, T.J. S-Borane Complexes of Iridium: Synthesis and Structural Characterization / T.J. Hebden, M.C. Denney, V. Pons, P.M.B. Piccoli, T.F. Koetzle, A.J. Schultz, W. Kaminsky, K.I. Goldberg, D.M. Heinekey // Journal of the American Chemical Society. – 2008. – V. 130. – P. 10812-10820.

[79] Dietrich, B.L. Iridium-Catalyzed Dehydrogenation of Substituted Amine Boranes: Kinetics, Thermodynamics, and Implications for Hydrogen Storage / B.L. Dietrich, K.I. Goldberg, D.M. Heinekey, T. Autrey, J.C. Linehan // Inorganic Chemistry. – 2008. – V. 47. – P. 8583-8585.

[80] Staubitz, A. Iridium-Catalyzed Dehydrocoupling of Primary Amine–Borane Adducts: A Route to High Molecular Weight Polyaminoboranes, Boron–Nitrogen Analogues of Polyolefins / A. Staubitz, A. Presa Soto, I. Manners // Angewandte Chemie International Edition. – 2008. – V. 47. – P. 6212-6215.

[81] Staubitz, A. Ammonia-Borane and Related Compounds as Dihydrogen Sources / A. Staubitz, A.P.M. Robertson, I. Manners // Chemical Reviews. – 2010. – V. 110. – P. 4079-4124.
[82] Tang, C.Y. Hydrogen Shuttling: Synthesis and Reactivity of a 14-Electron Iridium Complex Featuring a Bis (Alkyl) Tethered N-Heterocyclic Carbene Ligand / C.Y. Tang, N. Phillips, M.J. Kelly, S. Aldridge // Chemical Communications. – 2012. – V. 48. – P. 11999-12001.

[83] Fortman, G.C. Highly Active Iridium (Iii)–Nhc System for the Catalytic B–N Bond Activation and Subsequent Solvolysis of Ammonia–Borane / G.C. Fortman, A.M. Slawin, S.P. Nolan // Organometallics. – 2011. – V. 30. – P. 5487-5492. [84] Lin, T.-P. Boryl-Mediated Reversible H2 Activation at Cobalt: Catalytic Hydrogenation, Dehydrogenation, and Transfer Hydrogenation / T.-P. Lin, J.C. Peters // Journal of the American Chemical Society. – 2013. – V. 135. – P. 15310-15313.

[85] Ganguly, G. Theoretical Studies on the Mechanism of Homogeneous Catalytic Olefin Hydrogenation and Amine–Borane Dehydrogenation by a Versatile Boryl-Ligand-Based Cobalt Catalyst / G. Ganguly, T. Malakar, A. Paul // Acs Catal. – 2015. – V. 5. – P. 2754-2769.

[86] Todisco, S. Ammonia Borane Dehydrogenation Catalyzed by (K4-Ep3)Co(H) [Ep3 = E(Ch2ch2pph2)3; E = N, P] and H2 Evolution from Their Interaction with Nh Acids / S. Todisco, L. Luconi, G. Giambastiani, A. Rossin, M. Peruzzini, I.E. Golub, O.A. Filippov, N.V. Belkova, E.S. Shubina // Inorganic Chemistry. – 2017. – V. 56. – P. 4296–4307.

[87] Keaton, R.J. Base Metal Catalyzed Dehydrogenation of Ammonia-Borane for Chemical Hydrogen Storage / R.J. Keaton, J.M. Blacquiere, R.T. Baker // J. Am. Chem. Soc. – 2007. – V. 129. – P. 1844-1845.

[88] Zimmerman, P.M. The Role of Free N-Heterocyclic Carbene (Nhc) in the Catalytic Dehydrogenation of Ammonia–Borane in the Nickel Nhc System / P.M. Zimmerman, A. Paul, Z. Zhang, C.B. Musgrave // Angewandte Chemie International Edition. – 2009. – V. 48. – P. 2201-2205.

[89] Yang, X. The Catalytic Dehydrogenation of Ammonia-Borane Involving an Unexpected Hydrogen Transfer to Ligated Carbene and Subsequent Carbon–Hydrogen Activation / X. Yang,
M.B. Hall // Journal of the American Chemical Society. – 2008. – V. 130. – P. 1798-1799.

[90] Zimmerman, P.M. Catalytic Dehydrogenation of Ammonia Borane at Ni Monocarbene and Dicarbene Catalysts / P.M. Zimmerman, A. Paul, C.B. Musgrave // Inorganic Chemistry. – 2009. – V. 48. – P. 5418-5433.

[91] Vogt, M. Amino Olefin Nickel (I) and Nickel (0) Complexes as Dehydrogenation Catalysts for Amine Boranes / M. Vogt, B. de Bruin, H. Berke, M. Trincado, H. Grützmacher // Chemical Science. – 2011. – V. 2. – P. 723-727.

[92] Kim, S.-K. Palladium Catalysts for Dehydrogenation of Ammonia Borane with Preferential B- H Activation / S.-K. Kim, W.-S. Han, T.-J. Kim, T.-Y. Kim, S.W. Nam, M. Mitoraj, Ł. Piekos, A. Michalak, S.-J. Hwang, S.O. Kang // Journal of the American Chemical Society. – 2010. – V. 132. – P. 9954-9955.

[93] Rossin, A. Catalytic Amine-Borane Dehydrogenation by a Pcp-Pincer Palladium Complex: A Combined Experimental and Dft Analysis of the Reaction Mechanism / A. Rossin, G. Bottari, A.M. Lozano-Vila, M. Paneque, M. Peruzzini, A. Rossi, F. Zanobini // Dalton T. – 2013. – V. 42. – P. 3533-3541. [94] Roselló-Merino, M. Dehydrocoupling Reactions of Dimethylamine-Borane by Pt(Ii) Complexes: A New Mechanism Involving Deprotonation of Boronium Cations / M. Roselló-Merino, J. López-Serrano, S. Conejero // Journal of the American Chemical Society. – 2013. – V. 135. – P. 10910-10913.

[95] Bhunya, S. Combining Protons and Hydrides by Homogeneous Catalysis for Controlling the Release of Hydrogen from Ammonia–Borane: Present Status and Challenges / S. Bhunya, T. Malakar, G. Ganguly, A. Paul // Acs Catal. – 2016. – V. 6. – P. 7907-7934.

[96] Belkova, N.V. Z–H Bond Activation in (Di)Hydrogen Bonding as a Way to Proton/Hydride Transfer and H2 Evolution / N.V. Belkova, O.A. Filippov, E.S. Shubina // Chemistry – A European Journal. – 2018. – V. 24. – P. 1464-1470.

[97] Segawa, Y. Syntheses of Pbp Pincer Iridium Complexes: A Supporting Boryl Ligand / Y. Segawa, M. Yamashita, K. Nozaki // Journal of the American Chemical Society. – 2009. – V. 131. – P. 9201-9203.

[98] Luconi, L. Amine Boranes Dehydrogenation Mediated by an Unsymmetrical Iridium Pincer Hydride:(Pcn) Vs (Pcp) Improved Catalytic Performance / L. Luconi, E.S. Osipova, G. Giambastiani, M. Peruzzini, A. Rossin, N.V. Belkova, O.A. Filippov, E.M. Titova, A.A. Pavlov, E.S. Shubina // Organometallics. – 2018. – V. 37. – P. 3142-3153.

[99] Punji, B. A Highly Stable Adamantyl-Substituted Pincer-Ligated Iridium Catalyst for Alkane Dehydrogenation / B. Punji, T.J. Emge, A.S. Goldman // Organometallics. – 2010. – V. 29. – P. 2702-2709.

[100] N.V. Belkova, L.M. Epstein, O.A. Filippov, E.S. Shubina. Ir Spectroscopy of Hydrides and Its Application to Hydrogen Bonding and Proton Transfer Studies // Spectroscopic Properties of Inorganic and Organometallic Compounds: Techniques, Materials and ApplicationsThe Royal Society of Chemistry, 2012. – C. 1-28.

[101] Epstein, L.M. Spectral Features of Unconventional Hydrogen Bonds and Proton Transfer to Transition Metal Hydrides / L.M. Epstein, N.V. Belkova, E.I. Gutsul, E.S. Shubina // Pol. J. Chem. – 2003. – V. 77. – P. 1371-1383.

[102] Dub, P.A. Hydrogen Bonding to Carbonyl Hydride Complex Cp*Mo(PMe3)(2)(Co)H and Its Role in Proton Transfer / P.A. Dub, O.A. Filippov, N.V. Belkova, J.C. Daran, L.M. Epstein, R. Poli, E.S. Shubina // Dalton T. – 2010. – V. 39. – P. 2008-2015.

[103] Titova, E.M. Pcp Pincer Iridium Chemistry – Coordination of Pyridines to
[(Tbupcp)Irh(Cl)] / E.M. Titova, G.A. Silantyev, O.A. Filippov, E.S. Gulyaeva, E.I. Gutsul, F.M. Dolgushin, N.V. Belkova // European Journal of Inorganic Chemistry. – 2016. – V. 10.1002/ejic.201501083 – P. 56–63.

[104] Atkinson, K.D. Spontaneous Transfer of Parahydrogen Derived Spin Order to Pyridine at Low Magnetic Field / K.D. Atkinson, M.J. Cowley, P.I.P. Elliott, S.B. Duckett, G.G.R. Green, J. López-Serrano, A.C. Whitwood // Journal of the American Chemical Society. – 2009. – V. 131. – P. 13362-13368.

[105] Atkinson, K.D. Para-Hydrogen Induced Polarization without Incorporation of Para-Hydrogen into the Analyte / K.D. Atkinson, M.J. Cowley, S.B. Duckett, P.I.P. Elliott, G.G.R. Green, J. López-Serrano, I.G. Khazal, A.C. Whitwood // Inorganic Chemistry. – 2009. – V. 48. – P. 663-670.

[106] St John, A. Pincer Complexes as Catalysts for Amine Borane Dehydrogenation / A. St John, K.I. Goldberg, D.M. Heinekey // Organometallic Pincer Chemistry. – 2013. – V. 40. – P. 271-287.

[107] Rossin, A. Ammonia-Borane and Amine-Borane Dehydrogenation Mediated by Complex Metal Hydrides / A. Rossin, M. Peruzzini // Chemical Reviews. – 2016. – V. 116. – P. 8848-8872.

[108] Choi, J. Dehydrogenation and Related Reactions Catalyzed by Iridium Pincer Complexes /
J. Choi, A.H.R. MacArthur, M. Brookhart, A.S. Goldman // Chemical Reviews. – 2011. – V.
111. – P. 1761-1779.

[109] Efficient Catalysis of Ammonia Borane Dehydrogenation / M.C. Denney, V. Pons, T.J.
Hebden, D.M. Heinekey, K.I. Goldberg // Journal of the American Chemical Society. – 2006. –
V. 128. – P. 12048-9.

[110] Hebden, T.J. Dihydrogen/Dihydride or Tetrahydride? An Experimental and Computational Investigation of Pincer Iridium Polyhydrides / T.J. Hebden, K.I. Goldberg, D.M. Heinekey, X.W. Zhang, T.J. Emge, A.S. Goldman, K. Krogh-Jespersen // Inorganic Chemistry. – 2010. – V. 49. – P. 1733-1742.

[111] Gupta, M. Catalytic Dehydrogenation of Cycloalkanes to Arenes by a Dihydrido Iridium P-C-P Pincer Complex / M. Gupta, C. Hagen, W.C. Kaska, R.E. Cramer, C.M. Jensen // Journal of the American Chemical Society. – 1996. – V. 119. – P. 840-841.

[112] Titova, E.M. Mild Activation of Ir-Cl Bond Upon the Interaction of Pincer Iridium Hydride ((PCP)-P-tBu)IrH(Cl) with Acids and Bases / E.M. Titova, E.S. Osipova, E.S. Gulyaeva, V.N. Torocheshnikov, A.A. Pavlov, G.A. Silantyev, O.A. Filippov, E.S. Shubina, N.V. Belkova // J Organomet Chem. – 2017. – V. 827. – P. 86-95.

[113] Titova, E.M. Mechanism of Dimethylamine-Borane Dehydrogenation Catalyzed by an Iridium(III) Pcp-Pincer Complex / E.M. Titova, E.S. Osipova, A.A. Pavlov, O.A. Filippov, S.V. Safronov, E.S. Shubina, N.V. Belkova // Acs Catal. – 2017. – V. 7. – P. 2325-2333. [114] Catalyzed Dehydrogenation of Ammonia–Borane by Iridium Dihydrogen Pincer Complex Differs from Ethane Dehydrogenation / A. Paul, C.B. Musgrave // Angew. Chem. – 2007. – V. 119. – P. 8301-8304.

[115] Hydrogen and Dihydrogen Bonds in the Reactions of Metal Hydrides / N.V. Belkova,
L.M. Epstein, O.A. Filippov, E.S. Shubina // Chem Rev. – 2016. – V. 116. – P. 8545-87.

[116] Filippov, O.A. First Example of Hydrogen Bonding to Platinum Hydride / O.A. Filippov, V.A. Kirkina, N.V. Belkova, S. Stoccoro, A. Zucca, G.M. Babakhina, L.M. Epstein, E.S. Shubina // Zeitschrift Fur Physikalische Chemie-International Journal of Research in Physical Chemistry & Chemical Physics. – 2013. – V. 227. – P. 869-880.

[117] Fulmer, G.R. Hydrogenolysis of Palladium(Ii) Hydroxide, Phenoxide, and Alkoxide Complexes / G.R. Fulmer, A.N. Herndon, W. Kaminsky, R.A. Kemp, K.I. Goldberg // Journal of the American Chemical Society. – 2011. – V. 133. – P. 17713-17726.

[118] Connelly, S.J. Characterization of a Palladium Dihydrogen Complex / S.J. Connelly, A.G. Chanez, W. Kaminsky, D.M. Heinekey // Angew Chem Int Edit. – 2015. – V. 54. – P. 5915-5918.

[119] Belkova, N.V. Dihydrogen Bonding, Proton Transfer and Beyond: What We Can Learn from Kinetics and Thermodynamics / N.V. Belkova, L.M. Epstein, E.S. Shubina // European Journal of Inorganic Chemistry. – 2010. – V. 23. – P. 3555-3565.

[120] Skagestad, V. Thermodynamics of Heterolytic and Homolytic M-H Bond-Cleavage Reactions of 18-Electron and 17-Electron Group-6 Hydridotris(Pyrazolyl)Borate Metal-Hydrides
/ V. Skagestad, M. Tilset // Journal of the American Chemical Society. – 1993. – V. 115. – P. 5077-5083.

[121] Hunter, C.A. Quantifying Intermolecular Interactions: Guidelines for the Molecular Recognition Toolbox / C.A. Hunter // Angew Chem Int Edit. – 2004. – V. 43. – P. 5310-5324.

[122] Catalytic Amine-Borane Dehydrogenation by a Pcp-Pincer Palladium Complex: A Combined Experimental and Dft Analysis of the Reaction Mechanism / A. Rossin, G. Bottari, A.M. Lozano-Vila, M. Paneque, M. Peruzzini, A. Rossi, F. Zanobini // Dalton Trans. – 2013. – V. 42. – P. 3533-41.

[123] Gupta, M. A Highly Active Alkane Dehydrogenation Catalyst: Stabilization of Dihydrido Rhodium and Iridium Complexes by a P-C-P Pincer Ligand / M. Gupta, C. Hagen, R.J. Flesher, W.C. Kaska, C.M. Jensen // Chemical Communications. – 1996. – V. 17. – P. 2083-2084.

[124] Krogh-Jespersen, K. Combined Computational and Experimental Study of Substituent Effects on the Thermodynamics of H2, Co, Arene, and Alkane Addition to Iridium / K. Krogh-Jespersen, M. Czerw, K. Zhu, B. Singh, M. Kanzelberger, N. Darji, P.D. Achord, K.B. Renkema, A.S. Goldman // Journal of the American Chemical Society. – 2002. – V. 124. – P. 10797-10809. [125] Whaley, T.W. Syntheses with Stable Isotopes: Pyridine-15n / T.W. Whaley, D.G. Ott // Journal of Labelled Compounds. – 1974. – V. 10. – P. 283-286.

[126] Moulton, C.J. Transition Metal-Carbon Bonds. Part Xlii. Complexes of Nickel, Palladium, Platinum, Rhodium and Iridium with the Tridentate Ligand 2,6-Bis[(Di-T-Butylphosphino)Methyl]Phenyl / C.J. Moulton, B.L. Shaw // Journal of the Chemical Society, Dalton Transactions. – 1976. – V. 10.1039/DT9760001020 – P. 1020-1024.

[127] Брауэр, Г. Руководство По Неорганическому Синтезу. Том 6-М. / Г. Брауэр, С. Герцог, О. Глемзер, Г. Грубе, К. Густав, А. Змино, Г. Лукс, Х. Мюллер, Е. Шварцман, К. Швохау // Мир.– 1986. – Р

[128] Frisch, M.J. Gaussian 03, Revision D.01. / M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J. Montgomery, J. A., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople // Wallingford CT. Gaussian, Inc.– 2004. – P

[129] Frisch, M.J. Gaussian 09, Revision D.1. / M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J. Montgomery, J. A., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople // Wallingford CT. Gaussian, Inc.– 2009. – P

[130] Becke, A.D. Density-Functional Thermochemistry. 3. The Role of Exact Exchange / A.D.
 Becke // J. Chem. Phys. – 1993. – V. 98. – P. 5648-5652.

 [131] Stephens, P.J. Ab-Initio Calculation of Vibrational Absorption and Circular-Dichroism Spectra Using Density-Functional Force-Fields / P.J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Frisch // J. Phys. Chem. – 1994. – V. 98. – P. 11623-11627.

[132] Zhao, Y. The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-Class Functionals and 12 Other Functionals / Y. Zhao, D. Truhlar // Theoretica Chimica Acta. – 2008. – V. 120. – P. 215-241.

[133] Andrae, D. Energy-Adjustedab Initio Pseudopotentials for the Second and Third Row Transition Elements / D. Andrae, U. Häußermann, M. Dolg, H. Stoll, H. Preuß // Theoretica chimica acta. – 1990. – V. 77. – P. 123-141.

[134] Haussermann, U. Accuracy of Energy-Adjusted Quasirelativistic Ab Initio Pseudopotentials: All-Electron and Pseudopotential Benchmark Calculations for Hg, Hgh and Their Cations / U. Haussermann, M. Dolg, H. Stoll, H. Preuss, P. Schwerdtfeger, R.M. Pitzer // Mol. Phys. – 1993. – V. 78. – P. 1211 - 1224.

[135] Kuchle, W. Energy-Adjusted Pseudopotentials for the Actinides. Parameter Sets and Test Calculations for Thorium and Thorium Monoxide / W. Kuchle, M. Dolg, H. Stoll, H. Preuss // J. Chem. Phys. – 1994. – V. 100. – P. 7535 - 7542.

[136] Leininger, T. The Accuracy of the Pseudopotential Approximation. Ii. A Comparison of Various Core Sizes for in Pseudopotentials in Calculations for Spectroscopic Constants of Inh, Inf, Incl / T. Leininger, A. Nicklass, H. Stoll, M. Dolg, P. Schwerdtfeger // J. Chem. Phys. – 1996. – V. 105. – P. 1052 - 1059.

[137] Ehlers, A.W. A Set of F-Polarization Functions for Pseudo-Potential Basis Sets of the Transition Metals Sc---Cu, Y---Ag and La---Au / A.W. Ehlers, M. Böhme, S. Dapprich, A. Gobbi, A. Höllwarth, V. Jonas, K.F. Köhler, R. Stegmann, A. Veldkamp, G. Frenking // Chemical Physics Letters. – 1993. – V. 208. – P. 111-114.

[138] Wadt, W.R. Abinitio Effective Core Potentials for Molecular Calculations - Potentials for Main Group Elements Na to Bi / W.R. Wadt, P.J. Hay // J. Chem. Phys. – 1985. – V. 82. – P. 284-298.

[139] Hay, P.J. Abinitio Effective Core Potentials for Molecular Calculations - Potentials for the Transition-Metal Atoms Sc to Hg / P.J. Hay, W.R. Wadt // J. Chem. Phys. – 1985. – V. 82. – P. 270-283.

[140] Hollwarth, A. A Set of D-Polarization Functions for Pseudo-Potential Basis-Sets of the Main-Group Elements Al-Bi and F-Type Polarization Functions for Zn, Cd, Hg / A. Hollwarth,

M. Bohme, S. Dapprich, A.W. Ehlers, A. Gobbi, V. Jonas, K.F. Kohler, R. Stegmann, A. Veldkamp, G. Frenking // Chemical Physics Letters. – 1993. – V. 208. – P. 237-240.

[141] Barone, V. A New Definition of Cavities for the Computation of Solvation Free Energies by the Polarizable Continuum Model / V. Barone, M. Cossi, J. Tomasi // The Journal of Chemical Physics. – 1997. – V. 107. – P. 3210-3210.

[142] Miertus, S. Electrostatic Interaction of a Solute with a Continuum - a Direct Utilization of Abinitio Molecular Potentials for the Prevision of Solvent Effects / S. Miertus, E. Scrocco, J. Tomasi // Chem Phys. – 1981. – V. 55. – P. 117-129.

[143] Clark, T. Efficient Diffuse Function-Augmented Basis Sets for Anion Calculations. Iii. The 3-21+G Basis Set for First-Row Elements, Li–F / T. Clark, J. Chandrasekhar, G.W. Spitznagel, P.V.R. Schleyer // Journal of Computational Chemistry. – 1983. – V. 4. – P. 294-301.
[144] Francl, M.M. Self-Consistent Molecular Orbital Methods. Xxiii. A Polarization-Type Basis Set for Second-Row Elements / M.M. Francl, W.J. Pietro, W.J. Hehre, J.S. Binkley, M.S. Gordon, D.J. DeFrees, J.A. Pople // The Journal of Chemical Physics. – 1982. – V. 77. – P. 3654-3665.

[145] Hariharan, P. Influence of Polarization Functions on Molecular-Orbital Hydrogenation Energies / P. Hariharan, J.A. Pople // Theoretica Chimica Acta. – 1973. – V. 28. – P. 213-222.

[146] Hehre, W.J. Self-Consistent Molecular-Orbital Methods .12. Further Extensions of Gaussian-Type Basis Sets for Use in Molecular-Orbital Studies of Organic-Molecules / W.J. Hehre, R. Ditchfield, J.A. Pople // J. Chem. Phys. – 1972. – V. 56. – P. 2257-2261.

[147] Marenich, A.V. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions / A.V. Marenich, C.J. Cramer, D.G. Truhlar // The journal of physical chemistry. B. – 2009. – V. 113. – P. 6378-96.

[148] Fukui, K. The Path of Chemical Reactions - the Irc Approach / K. Fukui // Accounts of Chemical Research. – 1981. – V. 14. – P. 363-368.

[149] H.P. Hratchian, H.B. Schlegel. Chapter 10 - Finding Minima, Transition States, and Following Reaction Pathways on Ab Initio Potential Energy Surfaces // Theory and Applications of Computational Chemistry / Scuseria, C.E.D.F.S.K.E. – Amsterdam: Elsevier, 2005. – C. 195-249.

[150] E.D. Glendening, J.K. Badenhoop, A.E. Reed, J.E. Carpenter, J.A. Bohman, C. Morales, F. Weindhold. Nbo 5.0 // Book Nbo 5.0 / EditorTheoretical Chemistry Institute, University of Wisconsin: Madison, WI, , 2001.

[151] Reed, A.E. Intermolecular Interactions from a Natural Bond Orbital, Donor-Acceptor Viewpoint / A.E. Reed, L.A. Curtiss, F. Weinhold // Chemical Reviews. – 1988. – V. 88. – P. 899-926.

[152] T.A. Keith. Aimall (Version 15.05.18) // Book Aimall (Version 15.05.18) / EditorTK Gristmill Software, Overland Park KS, USA,, 2015.

[153] Espinosa, E. About the Evaluation of the Local Kinetic, Potential and Total Energy Densities in Closed-Shell Interactions / E. Espinosa, I. Alkorta, I. Rozas, J. Elguero, E. Molins // Chemical Physics Letters. – 2001. – V. 336. – P. 457-461.

[154] Espinosa, E. Hydrogen Bond Strengths Revealed by Topological Analyses of Experimentally Observed Electron Densities / E. Espinosa, E. Molins, C. Lecomte // Chemical Physics Letters. – 1998. – V. 285. – P. 170-173.

[155] Bader, R.F.W. Atoms in Molecules: A Quantum Theory (International Series of Monographs on Chemistry). / R.F.W. Bader // Oxford University Press: USA,.– 1994. – P

[156] Popelier, P.L. Atoms in Molecules: An Introduction. / P.L. Popelier // Prentice Hall, London, .- 2000. - P

[157] Matta, C. Quantum Theory of Atoms in Molecules: Recent Progress in Theory and Application. / C. Matta, R.J. Boyd // Wiley-VCH: New York, .- 2007. - P