

ОТЗЫВ ВЕДУЩЕЙ ОРГАНИЗАЦИИ

на диссертационную работу

Никовского Игоря Алексеевича

«НАПРАВЛЕННЫЙ ДИЗАЙН КОМПЛЕКСОВ ПЕРЕХОДНЫХ МЕТАЛЛОВ СО СПИНОВЫМ ПЕРЕХОДОМ НА ОСНОВЕ БИС(ПИРАЗОЛИЛ)ПИРИДИНОВ»,

Представленную на соискание ученой степени кандидата химических наук по специальностям 1.4.8. – Химия элементоорганических соединений 1.4.4. – Физическая химия

Дизайн новых функциональных материалов — одно из активно развивающихся направлений современного материаловедения. Перспективными объектами исследований в этом направлении являются комплексы переходных металлов, проявляющие эффекты бистабильности, индуцируемые внешним воздействием (изменение температуры, приложение давления, облучение). Наличие органических лигандов в координационном окружении иона металла открывает широкие возможности использования синтетических методов для выявления корреляций «строение-свойство» и получения соединений с желаемыми физическими характеристиками, что

актуально при создании молекулярных устройств, для практического применения их в качестве молекулярных сенсоров, переключателей и устройств для хранения и обработки информации.

Диссертационная работа Никовского И.А. посвящена направленному Co(II) Fe(II) дизайну комплексов И C производными бис-(пиразолил)пиридинов, претерпевающих спиновые переходы при изменении температуры. Спиновые переходы сопровождаются значительными изменениями магнитных, оптических и других свойств, что позволяет широкий набор физических методов, TOM использовать спектроскопию ядерного магнитного резонанса, для определения спинового состояния иона металла и построения корреляций «строение-свойство».

Диссертационная работа изложена на 144 страницах и состоит из введения, обзора литературы, обсуждения результатов, экспериментальной части, заключения, приложений и списка литературы. В качестве иллюстраций в диссертации приведены 50 схем, 30 рисунков и 5 таблиц; помимо этого 13 рисунков находятся в Приложении.

Во введении обозначены актуальность выбранной темы, объекты исследования, цель работы и задачи, а также отмечены научная новизна и практическая значимость.

В обзоре литературы, занимающем 28 страниц, рассмотрены явление спинового перехода в комплексах переходных металлов, влияние строения органических лигандов, в том числе стерические и электронные эффекты заместителей в них, на спиновое состояние иона металла, а также основные методы синтеза производных 2,6-ди(пиразол-3-ил)пиридина.

В разделе обсуждение результатов (42 стр.) описаны особенности синтеза N,N'-дизамещенных 2,6-бис(пиразол-3-ил)пиридинов и комплексов Fe(II) и/или Co(II) с ними. Некоторые производные 2,6-бис(пиразол-3-ил)пиридина и часть комплексов удалось получить в виде кристаллов и установить их строение методом рентгеноструктурного анализа. Для полученных комплексов определены спиновые состояния ионов металла в исследованных температурных диапазонах и для части комплексов обнаружены спиновые переходы с использованием различных физико-химических методов (метод РСА, магнетохимия, оптическая спектроскопия УФ и видимого диапазона, метод Эванса).

Следует отметить большой объём экспериментальной работы как в области органического синтеза (получение производных 2,6-бис(пиразол-3-ил)пиридинов), так и при синтезе координационных соединений Fe(II) и Co(II), в том числе с использованием оригинальных подходов для получения гетеролептических комплексов.

В экспериментальной части (38 стр.) приведены описания экспериментальных методов, применяемых в диссертационной работе, методики синтеза новых соединений и их характеристики.

В заключении изложены основные результаты и сформулированы выводы, которые соответствуют поставленным задачам.

Диссертационная работа Никовского И.А. представляет собой цельное, логически выстроенное исследование, которое вносит значимый вклад в химию гетероциклических, элементоорганических, а также координационных соединений. Помимо синтетической работы и интерпретации спектров, значительное внимание уделено анализу влияния заместителей на физико-химические свойства комплексов и выявление корреляций «структура-свойство» в ряду комплексов Fe(II) и Co(II) с замещенными 2,6-ди(пиразол-3-ил)пиридинами.

Достоверность полученных результатов подтверждается привлечением широкого круга физико-химических методов анализа, в частности использованием различных методик ЯМР-спектроскопии (¹H, ¹³C), рентгеноструктурного анализа, магнетохимических исследований в широком температурном интервале, оптической спектроскопии, метода Эванса, элементного анализа. Результаты представлены на российских конференциях в рецензируемых опубликованы В виде 8 статей (Координационная химия) и зарубежных (European Journal of Inorganic Chemistry, Chemistry— a European Journal, Inorganic Chemistry, Crystals) изданиях, рекомендованных ВАК.

Полученные результаты будут в дальнейшем полезны как в теоретическом, так и в практическом плане при обучении студентов химических факультетов университетов РФ (МГУ им. Ломоносова, Санкт-Петербургский государственный университет, НГУ, ННГУ им. Лобачевского, Российский химико-технологический университет им. Д.И. Менделеева и др.), а также в научной работе ряда организаций, например, ИОНХ РАН,

ИОХ РАН, ИНХ СО РАН, ИОФХ им. А.Е. Арбузова КНЦ РАН, НИОХ СО РАН, ИрИХ СО РАН, ИМХ РАН, МТЦ СО РАН и др.

Автореферат диссертации соответствует содержанию диссертации, а также содержит информацию о личном вкладе автора, апробации работы и публикациях.

К диссертационной работе имеется ряд замечаний:

- 1. В списке сокращений желательно придерживаться единообразия, если используется английский вариант написания сокращений для соединений, заместителей и растворителей, то должен быть использован для всех, в том числе и для диметилсульфоксида и тетрагидрофурана, для которых приведены русскоязычные сокращения.
- 2. Литературный обзор написан довольно лаконично и обходит стороной результаты российских исследователей (д.х.н. С.В. Ларионова, д.х.н. Л.Г. Лавреновой и д.х.н. М.Б. Бушуева), в работах которых изучались спиновые переходы в комплексах ионов переходных металлов, в том числе с замещенными бис-(пиролил)пиримидинами, структурно родственными замещенным 2,6-ди(пиразол-3-ил)пиридинам.
- 3. Диссертационная работа содержит значительное количество ошибок, опечаток, разговорных лексических конструкций, местами отсутствует единый стиль форматирования. Ошибки в нумерации схем (отсутствуют схемы 10, 12 и 29, но две схемы с №11) и рисунков (№23 присутствует трижды) и вводимые автором обозначения соединений в литературном обзоре и обсуждении результатов скорее затрудняют восприятие материала. Так, один и тот же номер может соответствовать как группе соединений с различными заместителями (например, 8-12,14, 19-25,29, 30 и др), так и разным соединениям (например, 53 на схемах 26 и 35, 71 на схемах 46 и 47, 64 на рис.23 и схеме 44 и др.), тогда как часть соединений остается без нумерации и/или обозначений.
- 4. В экспериментальной части отсутствует информация, о том, как были получены пленки комплексов, для которых записывали УФвид. спектры (в полимере? На подложке? Раствор?).

- Для характеризации новых соединений желательно ограничиваться только данными ЯМР-спектроскопии и элементного анализа на С, Н и N, но также исследовать методами ИКспектроскопии, при наличии галогенов, приводить и для них данные элементного анализа, а также температуры плавления. Для части результаты элементного анализа отличаются от вычисленных значений, что вызывает сомнения в чистоте полученных соединений (например, для дизамещенных фенилгидразинов – ошибки в формулах и вычисленных значениях содержания C, H и N, а также содержание C в L^{1}_{Me} , L^{1}_{iPr} , L^{2}_{Br} . и др.).
- 6. В списке литературы встречается как минимум 15 повторений (например, ссылки 3=4, 7=11, 13=19, 24=82=94, 18=38=99 и др), часть ссылок содержит недостаточные или избыточные библиографические данные (ссылки 23, 60, 102, 104 и др.).

Сделанные замечания связаны преимущественно с оформлением работы и не влияют на общую положительную её оценку.

Заключение

Работа Никовского Игоря Алексеевича является законченным исследованием и по поставленным задачам, уровню их решения, научной новизне и практической значимости, по количеству и уровню публикаций, а также соответствует паспорту специальности 1.4.8. – химия элементоорганических соединений (химические науки) в пунктах: 1) Синтез, выделение и очистка новых соединений; 2) Разработка новых и модификация существующих синтеза элементоорганических соединений; 6) Выявление закономерностей типа «структура – свойство»; 7) Выявление практически важных свойств элементоорганических соединений, а также специальности физическая **ХИМИЯ** (химические науки) В пунктах: Экспериментальное определение и расчет параметров строения молекул и пространственной структуры веществ; 4) Изучение физико-химических свойств систем при воздействии внешних полей, а также в экстремальных условиях высоких температур и давлений.

И.А. Можно заключить, что диссертация Никовского «Направленный дизайн комплексов переходных металлов со спиновым основе бис(пиразолил)пиридинов» удовлетворяет требованиям ВАК РФ к диссертациям на соискание ученой степени кандидата химических наук, установленным в п.п. 9-14 "Положения о порядке присуждения ученых степеней", утвержденного постановлением Правительства РФ от 24 сентября 2013 г. № 842, а ее автор, Никовский Игорь Алексеевич, несомненно заслуживает присуждения ученой степени специальности 1.4.8. Химия химических наук по кандидата элементоорганических соединений и 1.4.4. – Физическая химия.

Отзыв составлен к.х.н. с.н.с. ЛМКС Богомяковым А. С., обсужден и одобрен на заседании Ученого совета ФБГУН института «Международный Томографический центр» СО РАН, протокол № 11 от 29.10.2021 г.

К.х.н., с.н.с. ЛМКС МТЦ СО РАН

Богомяков А.С.

ФБГУН институт «Международный Томографический центр» СО РАН

Почтовый адрес: 630090, г. Новосибирск, ул. Институтская, 3а.

Ученый секретарь МТЦ СО РАН.

Телефон: +7-383-330-8114

e-mail: bus@tomo.nsc.ru

Адрес официального сайта в сети «Интернет»: https://www.tomo.nsc.ru

секретарь