ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ ИНСТИТУТ ЭЛЕМЕНТООРГАНИЧЕСКИХ СОЕДИНЕНИЙ им. А.Н. НЕСМЕЯНОВА РОССИЙСКОЙ АКАДЕМИИ НАУК

на правах рукописи

Муратов Дмитрий Викторович

Трехпалубные комплексы с пятичленными борсодержащими циклическими лигандами

02.00.08 – Химия элементоорганических соединений

ДИССЕРТАЦИЯ на соискание ученой степени доктора химических наук

> Москва 2021

ОГЛАВЛЕНИЕ

Введе	ение	4	
Глава	а 1 Трехпалубные комплексы		
	с мостиковым борольным лигандом	10	
1.1	Исходные сэндвичевые соединения	24	
1.2	Взаимодействие комплекса CpCo(η-C ₄ H ₄ BCy) с дикатион	ными	
	фрагментами [LM] ²⁺	28	
1.3	Взаимодействие комплексов (η -C ₅ R ₅)Rh(η -C ₄ H ₄ BPh) (R = H, Me)	
	с дикатионными фрагментами [LM] ²⁺	30	
1.4	Взаимодействие комплекса CpRh(η-C ₄ H ₄ BPh)		
	с монокатионными фрагментами [LM]+	40	
1.5	Нейтральные трехпалубные комплексы		
	$(C_4H_4BPh)Rh(\mu-C_4H_4BPh)ML$	50	
1.6	Природа связывания в трехпалубных комплексах		
	с мостиковым борольным лигандом	59	
Глава 2. Трех- и четырехпалубные комплексы			
	с мостиковым диборолильным лигандом	64	
2.1	Исходные сэндвичевые соединения	73	
2.2	Нейтральные трехпалубные комплексы	94	
2.2.1	Нейтральные трехпалубные комплексы		
	$CpCo(\mu-C_3B_2Me_5)M(ring)$	94	
2.2.2	Нейтральные трехпалубные комплексы		
	$CpCo(C_3B_2Me_5)ML_2$	117	
2.2.3	Нейтральные трехпалубные комплексы		
	$CpCo(\mu-C_3B_2Me_5)ML_3$ и $CpCo(\mu-C_3B_2Me_5)ML_2X$	129	
2.3	Катионные трехпалубные комплексы	138	
2.4	Четырехпалубные комплексы	160	

Оглавление

2.4.1	Нейтральные четырехпалубные комплексы	160
2.4.2	Катионные четырехпалубные комплексы	166
Глава	а 3 Реакционная способность трехпалубных комплексов	
	с борсодержащими лигандами	175
3.1	Галогенидные комплексы [CpCo(C ₃ B ₂ Me ₅)MX ₂] ₂	175
3.1.1	Синтез галогенидных комплексов	175
3.1.2	Катионные трис(галогенидные) комплексы	
	$[(\mu - X)_3 M_2 (C_3 B_2 M e_5)_2 Co_2 C p_2]^+$	176
3.1.3	Взаимодействие галогенидных комплексов	
	с двухэлектронными лигандами	182
3.1.4	Катионные трехпалубные комплексы	193
3.1.5	Дикатионные трехпалубные комплексы	194
3.1.6	Трехпалубные комплексы	
	с терминальными карборановыми лигандами	213
3.2	Стабилизация α-карбениевого центра	222
3.2.1	Трехпалубный комплекс $[CpCo(\mu-C_3B_2Me_5)Ru(C_5Me_4CH_2)]^+$	
	со стабилизированным α-карбениевым центром	222
3.2.2	Реакционная способность трехпалубного комплекса	
	$[CpCo(1,3-C_3B_2Me_5)Ru(C_5Me_4CH_2)]^+$	232
Заключение		244
Экспериментальная часть		248
	Экспериментальная часть к Главе 1	252
	Экспериментальная часть к Главе 2	263
	Экспериментальная часть к Главе 3	279
Выводы		298
Список литературы		300

ВВЕДЕНИЕ

Актуальность проблемы. Трехпалубные комплексы представляют собой особый тип сэндвичевых соединений. Их молекулы состоят из трех параллельных циклических π-лигандов, между которыми "зажаты" два атома переходных металлов. Важной особенностью трехпалубных комплексов реализация двустороннего типа связывания является циклического лиганда одновременно с двумя атомами переходных металлов. Изучение закономерностей, определяющих образование, строение и реакционную способность таких соединений позволяет углубить и расширить представления о природе химической связи металлπ-лиганд. Это определяет актуальность проблемы, связанной с разработкой методов синтеза и исследованием новых типов сэндвичевых соединений.

Борсодержащие гетероциклы проявляют повышенную способность к двусторонней координации. На их основе удалось синтезировать не только трех-, но и многопалубные соединения. Однако следует отметить, что к началу настоящей работы большая часть из известных комплексов этого типа была получена в реакциях с использованием высоких температур. Как правило, это кипячение лиганда, его прекурсора или комплекса на его основе в высококипящем растворителе в присутствии каких-либо Использование соединений переходных металлов. такого подхода правило, к пониженным выходам и образованию приводило, как трудноразделяемых смесей продуктов.

В связи с этим, важной фундаментальной задачей являлась разработка эффективных и селективных методов синтеза трехпалубных комплексов. Подобные методы начали развиваться с конца 80-х годов, однако их использование было довольно ограниченным. Представлялось очень важным исследовать возможность широкого использования таких методов для синтеза трехпалубных соединений на основе борсодержащих циклических *π*-лигандов.

Не менее актуальной задачей является всестороннее исследование свойств синтезируемых соединений. Однако этот аспект химии трехпалубных комплексов до настоящей работы был практически не изучен. Также представляется важным привлечение рассчетных методов для более глубокого понимания факторов, управляющих образованием и устойчивостью целевых соединений.

Помимо фундаментального значения, актуальность проблемы, связанной с синтезом и исследованием трехпалубных комплексов, определяется перспективностью практического использования этих соединений, в частности, в гомогенном катализе, а также для создания новых молекулярных систем и объектов, обладающих перспективными свойствами для использования их, например, в молекулярной электронике и смежных областях.

Цель работы. Основной целью является разработка методов синтеза трехи четырехпалубных комплексов с мостиковыми пятичленными борсодержащими циклическими лигандами, исследование их строения и реакционной способности, а также углубление представлений о природе связи в таких соединениях.

Научная практическая В новизна И ценность. результате систематического исследования разработан общий подход к синтезу трехпалубных 5-членных борсодержащих комплексов на основе циклических лигандов, содержащих 1 или 2 атома бора, основанный на использовании реакций электрофильного стэкинга моноядерных сэндвичевых соединений с частицами [ML]ⁿ⁺. На основе этой методологии получен большой набор ранее неизвестных нейтральных и катионных комплексов с мостиковыми борольным и диборолильным лигандами.

Реакцией аниона $[CpCo(1,3-C_3B_2Me_5)]^-$ с галогенидами металлов синтезированы нейтральные четырехпалубные комплексы $CpCo(\mu-C_3B_2Me_5)M(\mu-C_3B_2Me_5)CoCp$ (M = Fe, Co, Ni). Окисление Co₃- и CoNiCo-соединений позволило получить их монокатионные производные.

Разработан метод синтеза димерных галогенидных комплексов трехпалубного типа $[CpCo(\mu-C_3B_2Me_5)MX_2]_2$. Продемонстрированы синтетические возможности этих комплексов в качестве синтонов трехпалубных частиц { $CpCo(\mu-C_3B_2Me_5)M$ }. На основе этих комплексов синтезирован широкий ряд производных с разнообразными n- и π -лигандами. Впервые показана возможность генерирования трехпалубных катионных фрагментов, что позволило получить первые примеры дикатионных трехпалубных комплексов с μ -диборолильным лигандом.

Впервые трехпалубный получен комплекс $[CpCo(\mu C_{3}B_{2}Me_{5})Ru(C_{5}Me_{4}CH_{2})]^{+}$, в котором α -карбениевый центр стабилизирован взаимодействия с атомом рутения. Использование этого за счет соединения в синтезе открывает доступ к разнообразным функционально замещенным производным. С помощью метода РСА изучены структурные особенности этого комплекса и полученных из него соединений. На основании DFT-расчетов показано, что стабилизация α-карбениевого атома углерода осуществляется вследствие вклада фульвеновой структуры С₅Ме₄СН₂-лиганда. По сравнению c металлоценовым аналогом [Cp*RuC₅Me₄CH₂]⁺ в этом случае наблюдается бо́льшая стабилизация αкарбениевого центра.

Введенные в практику подходы имеют большое синтетическое значение. Большая часть реакций протекает в очень мягких условиях (≤ 20 °C) и поэтому пригодна для синтеза малоустойчивых соединений. В ходе работы получено большое количество ранее неизвестных трех- и четырехпалубных соединений.

На основании рентгеноструктурных исследований установлено, что по сравнению с исходными моноядерными сэндвичевыми соединениями в синтезированных трехпалубных комплексах наблюдается удлинение расстояний, относящихся к мостиковому лиганду, и сокращение расстояний, относящихся к терминальному лиганду.

С помощью электрохимических методов проведено обширное исследование окислительно-восстановительного поведения синтезированных трех- и четырехпалубных комплексов. Показано, что они претерпевают одноэлектронные процессы окисления и восстановления, которые в большинстве случаев обратимы. Многие из изученных комплексов ведут себя как полностью делокализованные системы.

Исследована природа химической связи металл–лиганд в синтезированных комплексах. С помощью экспериментальных и теоретических методов показано, что анионы $[CpCo(1,3-C_3B_2R_5)]^-$ и $[C_5R_5]^-$ (R = H, Me) близки по координационной способности по отношению к переходным металлам.

Практическая ценность работы определяется также другими предложенными в ней удобными препаративными методами синтеза соединений, многие из которых ранее не были известны. Синтезированные соединения могут найти применение в органическом синтезе, катализе, а также при создании перспективных материалов для использования в нанотехнологиях и молекулярной электронике.

Личный вклад автора. Выбор темы, постановка задач и целей исследования, обсуждение и обобщение всех полученных результатов, формулировка научных положений и выводов, которые выносятся на защиту, принадлежат лично автору настоящей работы. Все работы, связанные с синтезом, а также исследованием реакционной способности и каталитической активности соединений, описанные в диссертации,

выполнены автором в сотрудничестве с коллегами, аспирантами и стажерами лаборатории π-комплексов переходных металлов ИНЭОС РАН. синтезированных соединений методами Исследования циклической вольтамперометрии осуществлены международного В рамках сотрудничества с проф. П. Занелло (г. Сиена, Италия). По тематике представленной работы под руководством автора были успешно защищены две диссертации на соискание ученой степени кандидата химических наук.

Апробация работы. Результаты диссертационной работы докладывались на II, III, IV и VII Европейских (EUROBORON) конференциях по химии бора (Динар, Франция, 2001; Прага, Чехия, 2004; Бремен, Германия, 2007; Суздаль, Россия, 2016), XI и XIII Международных (IMEBORON) конференциях по химии бора (Москва, 2002; Платья Д'Аро, Испания, 2008), XV Международной конференции (FECHEM) ПО металлоорганической химии (Цюрих, Швейцария, 2003), Международной конференции "Современные тенденции в элементоорганической И полимерной химии" (Москва, 2004), Всероссийской конференции "Итоги и перспективы химии элементоорганических соединений" (Москва, 2009), "Современные Международном симпозиуме тенденции В элементоорганической химии и катализе" (Москва, 2013), Международной конференции "Химия элементооорганических соединений и полимеров" (Москва, 2014), XIII коллоквиуме по ферроцену (Лейпциг, 2015), Международной конференции "Металлоорганическая и координационная химия: достижения и вызовы" (Нижний Новгород, 2015).

Публикации. Основное содержание диссертационной работы изложено в 26 научных статьях и 1 авторском обзоре.

Структура и объем диссертации. Диссертация состоит из введения, трех глав, заключения, экспериментальной части, выводов и списка литературы

(194 ссылки). Материал диссертации изложен на 311 страницах и включает 32 таблицы, 65 схем и 90 рисунков.

Данная работа обобщает цикл исследований, выполненных автором в лаборатории π-комплексов переходных металлов ИНЭОС РАН в период 2001–2020 гг. Отдельные части работы были выполнены при поддержке Российского Фонда Фундаментальных Исследований и программы Президиума РАН.

ГЛАВА 1 ТРЕХПАЛУБНЫЕ КОМПЛЕКСЫ С МОСТИКОВЫМ БОРОЛЬНЫМ ЛИГАНДОМ

Впервые трехпалубный комплекс, 34-электронный комплекс никеля $[CpNi(\mu-Cp)NiCp]^+$ (I)ⁱ с мостиковым циклопентадиенильным лигандом, был описан в 1972 г. как продукт взаимодействия никелоцена с электрофильными частицами R⁺ (R = H, Ph₃C; схема 1).^{1,2} Первой стадией этого процесса является присоединение частицы R⁺ к Cp-лиганду с образованием лабильного циклопентадиенового комплекса $[CpNi(C_5H_5R)]^+$, который далее отщепляет диеновый лиганд C₅H₅R, генерируя 14-электронный фрагмент $[CpNi]^+$.³ Вторая стадия, стэкингреакция этого фрагмента с молекулой никелоцена, Cp₂Ni, приводит к комплексу I.

Схема 1

^і Для индексации соединений, упоминаемых в литературной справке, используется сквозная нумерация с помощью римских цифр.

Согласно результатам расчетов, выполненных в 1976 г. Р. Хоффманном с сотр.,⁴ трехпалубные комплексы, содержащие 30 или 34 валентных электрона, должны обладать устойчивой электронной конфигурацией и, как следствие, повышенной стабильностью. Тем не менее, попытки получения новых представителей такого типа комплексов, содержащих в мостиковом положении Ср-лиганд, долгое время оставались безуспешными.^{5,6,7}

Положительный сдвиг был достигнут, когда для синтеза неизвестных paнee 30-электронных трехпалубных соединений с центральным циклопентадиенильным лигандом было предложено использовать стэкингpeaкции широко доступных 18-электронных сэндвичевых комплексов с катионными 12-электронными полусэндвичевыми фрагментами [(ring)M]⁺ (схема 2).⁸ В качестве источников 12-электронных катионных фрагментов предлагалось использовать комплексы таких фрагментов с лабильными лигандами, способными легко диссоциировать в относительно мягких условиях в слабокоординирующихся растворителях (например, CH₂Cl₂ или MeNO₂).

На основе предложенного подхода был синтезирован широкий ряд 30-электронных катионных трехпалубных комплексов (**Ha-i**). Синтез заключался в проведении стэкинг-реакций металлоценов (η-C₅R₅)М(η-

 $C_5R'_5$) на основе металлов подгруппы железа с фрагментами $[(\eta-C_5R''_5)M']^+$ (M, M' = Fe, Ru, Os; R, R', R'' = H, Me; схема 3).^{8,9} Железо- и рутенийсодержащие фрагменты $[(\eta-C_5R''_5)M']^+$ генерировали различными способами. Частицы $[CpFe]^+$ генерировали при облучении видимым светом комплекса $[CpFe(\eta-C_6H_6)]^+$ (0 °C при синтезе комплекса **IIa**; 20 °C во всех остальных случаях, CH₂Cl₂), тогда как катионы $[(\eta-C_5R''_5)Ru]^+$ (R'' = H, Me) – при кипячении раствора $[(\eta-C_5R''_5)Ru(MeCN)_3]^+$ (100°C, MeNO₂) или при протонировании комплекса $[Cp*Ru(OMe)]_2$ с помощью CF₃SO₃H (20 °C, Et₂O).

Схема 3

В Cp*RuCp результате реакции пентаметилрутеноцена c дикатионными фрагментами $[(ring)M]^{2+}$ ((ring)M = Cp*Rh, Cp*Ir, (η- $C_6Me_6)Ru$. $(n-C_4Me_4)Pt$ В нитрометане происходит перенос циклопентадиенильного лиганда с атома рутения на атомы родия, иридия и платины. Промежуточно образующиеся трехпалубные комплексы (III) были зафиксированы с помощью ¹Н ЯМР спектроскопии, однако они неустойчивы и разлагаются на катионные соединения [(ring)MCp]⁺ и $[Cp*Ru(MeNO_2)_3]^+$ (cxema 4).⁹

Глава 1

(ring)M = Cp*Rh, Cp*Ir, $(\eta$ -C₆Me₆)Ru, $(\eta$ -C₄Me₄)Pt

Схема 4

Карбонилсодержащие трехпалубные комплексы $[Cp*M(\mu-Cp*)Mn(CO)_3]^+$ (**IV**, M = Fe, Ru, Os) были получены в результате взаимодействия $Cp*_2M$ в кипящем хлористом метилене с комплексом $[(\eta^6-C_{10}H_8)Mn(CO)_3]^+$, который в условиях реакции является источником фрагмента $[Mn(CO)_3]^+$ (схема 5).¹⁰

Схема 5

Трехпалубный комплекс V, образующийся при стэкинг-реакции фрагмента [CpFe]⁺ с соединением CpCo(η -C₄Me₄) (VI), стабилен только ниже 0 °C; при более высокой температуре (~ 20 °C) он разлагается с отщеплением устойчивой молекулы ферроцена и генерированием фрагмента [(η -C₄Me₄)Co]⁺. Дальнейшая реакция этого фрагмента с

избытком CpCo(η-C₄Me₄) приводит к симметричному дикобальтовому трехпалубному комплексу (**VII**, схема 6).^{11,12}

Близко по смыслу к вышеприведенному превращению примыкает реакция симметризации. Так трехпалубный комплекс никеля VIII при стоянии раствора в нитрометане при комнатной температуре медленно превращается в эквимолекулярную смесь симметричных трехпалубных соединений I и IX (схема 7).^{13,14} Предполагают, что движущей силой этой является бо́льшая термодинамическая устойчивость реакции симметричных комплексов I и IX по сравнению с VIII. Это обусловлено π-орбитали мостикового лиганда имеют что двухстороннюю тем. направленность, и взаимодействие с двумя одинаковыми фрагментами в общем случае должно быть более выгодно, чем с различающимися.

Глава 1

В целом следует отметить, что хотя использование подхода стэкингреакций позволило значительно расширить синтетические возможности в области трехпалубных комплексов, однако число устойчивых соединений с центральным циклопентадиенильным лигандом, полученных таким методом, довольно ограниченно. Относительно невысокая стабильность, а также довольно строгое выполнение правила 30/34 электронов в таких соединениях обусловлены, вероятно, донорно-акцепторными свойствами мостикового Ср-лиганда. В рамках классической модели Дьюара-Чатта-Дункансон эффективное связывание между атомом переходного металла и циклическим π -лигандом осуществляется одновременно двумя способами: 1) прямое донирование электронов лиганда на атом металла; и 2) обратное донирование (акцептирование по отношению к металлу) электронов металла на лиганд в количестве, необходимом для дополнения своего π контура до устойчивой ароматической конфигурации (4n+2 π -электронов).

Можно предположить, что важным фактором, влияющим на прочность связи металл—лиганд, является баланс донорно-акцепторных свойств лиганда. В этом смысле Ср-лиганд является сильным π -донором и достаточно слабым π -акцептором (Ср-лиганд является донором 5 электронов и акцептором 1 электрона), что делает возможным образование

на его основе высокоустойчивых моноядерных комплексов (например, ферроцена), однако, акцепторной составляющей Ср-лиганда не всегда достаточно для прочного связывания с двумя атомами металлов, как это имеет место в трехпалубных комплексах.

Формально простая замена одной из СН-вершин в циклопентадиенильном лиганде C_5H_5 на вершину ВН приводит к боролу C_4H_4BH . Так как борол имеет 4 валентных электрона, он антиароматичен и не может быть выделен в свободном виде. Известны лишь некоторые примеры его производных, которые относительно стабильны, например, пентафенилборол C_4Ph_4BPh .^{15,16} Тем не менее, трехпалубные комплексы на основе борола и других борсодержащих гетероциклов достаточно широко распространены.^{17,18}

Первый пример трехпалубного комплекса с мостиковым борольным лигандом, комплекс марганца **X**, был получен в 1976 году в результате взаимодействия 1-фенил-4,5-дигидроборепина (**XI**) с $Mn_2(CO)_{10}$ в кипящем мезителене (схема 8).^{19,20} Аналогичная реакция с [CpFe(CO)₂]₂ приводит к смеси двух трехпалубных комплексов CpFe(μ -C₄H₃EtBPh)FeCp (**XII**) и CpFe(μ -C₄H₃(CH=CH₂)BPh)FeCp (**XIII**).²⁰ По-видимому, в ходе этих реакций происходит миграция двойной связи и сужение 7-членного цикла до пятичленного.

Схема 8

Реакции относительно доступного дианиона борольного лиганда $[C_4H_4BNPr^i_2]^{2-}$ (XIV), содержащего пространственно затрудненный заместитель при атоме бора, с комплексами родия $[LRhCl]_2$ (L = $(C_2H_4)_2$, 1,5- C_8H_{12} , C₄H₄BNPrⁱ₂), никеля $[CpNi(1,5-C_8H_{12})]^+$ и кобальта CoBr₂·DME в тетрагидрофуране были использованы для синтеза соответствующих нейтральных трехпалубных комплексов $LRh(\mu-C_4H_4BPr^i_2)RhL$ (XV), CpNi(μ -C₄H₄BPrⁱ₂)NiCp (XVI) и (η -C₄H₄BPrⁱ₂)Co(μ -C₄H₄BPrⁱ₂)Co(η -C₄H₄BPrⁱ₂)Co(η -C₄H₄BPrⁱ₂)Co(η -C₄H₄BPrⁱ₂)(XVII), соответственно (схема 9).²¹

Схема 9

Наиболее часто для синтеза трехпалубных комплексов с мостиковым борольным лигандом используют 2,5-дигидро-1Н-боролы (**XVIIIa**) или изомерные им 2,3-дигидро-1Н-боролы (**XVIIIb**, схема 10). При реакции этих соединений с комплексами переходных металлов происходит их дегидрирование и комплексообразование.^{22,23} Так **XVIIIa** реагирует с Mn₂(CO)₁₀ или V(CO)₆ с образованием 30-электронных трехпалубных

комплексов (CO)₃Mn(μ -C₄H₄BR)Mn(CO)₃ (**XIX** R = Ph, OMe) ^{22,24} и (CO)₄V(μ -C₄H₄BPh)V(CO)₄ (**XX**), соответственно.²⁵

Схема 10

Взаимодействие никелоцена с **XVIIIa,b** приводит к 34-электронным комплексам **XXI** (R = Me, Ph).²⁶ Карбонил кобальта Co₂(CO)₈ реагирует с **XVIIIa,b** с образованием биядерных соединений **XXII** (R = Me, Ph).²⁷ Пиролиз последних при 160–180 °C приводит к дикобальтовым трехпалубным соединениям **XXIII** (схема 11). Со-пиролиз **XXII** (R = Ph) с $Mn_2(CO)_{10}$ или [CpFe(CO)₂]₂ дает соответствующие гетерометаллические трехпалубные комплексы **XXIV** и **XXV** наряду с **XXIII** (R = Ph).

Схема 11

Взаимодействие **XVIIIa,b** с комплексом Крамера [Rh(C₂H₄)₂Cl]₂ приводит к родиевым аналогам соединений **XXIII**, (η -C₄H₄BR)Rh(μ -C₄H₄BR)Rh(η -C₄H₄BR) (R = Me, Ph) (**XXVI**).^{22,28} Трехпалубные комплексы (η -C₄H₄BR)Rh(μ -C₄H₄BR)Rh(η -C₄H₄BR) (R = Me, Ph) довольно легко подвергаются расщеплению под действием ряда нуклеофилов, таких как NH₃, PMe₃, P(OMe)₃, KCN и др.^{27,28,29} Особенно интересны реакции с CpNa, которые приводят к сэндвичевым комплексам CpRh(η -C₄H₄BR) (**XXVII**) и [(η -C₄H₄BR)₂Rh]⁻ (**XXVIII**) (схема 12). Аналогичная реакция проходит и для кобальтового аналога **XXIII**, однако в этом случае требуются более жесткие условия. Помимо этого, трехпалубный комплекс **XXVI** под действием I₂ подвергается расщеплению с образованием бис-борольных комплексов (η -C₄H₄BR)₂RhI (**XXIX**) и тетрамеров [(η -C₄H₄BR)RhI]₄ (**XXX**).³⁰ Тетрамерные соединения **XXX** привлекательны в качестве исходных для получения производных на основе фрагментов (η -C₄H₄BR)Rh(R=Me, Ph).^{31,32}

Для борол-содержащих комплексов описан ряд примеров использования стэкинг-реакций для синтеза трехпалубных комплексов. Так, взаимодействие аниона [CpFe(η -C₄H₄BPh)]⁻ (**XXXI**) с комплексами (CO)₃ML₃ (M = Cr, L = NH₃; M = Mo, W, L = MeCN) приводит к трехпалубным комплексам **XXXIIa–с** (схема 13).^{33,34}

Схема 13

С помощью стэкинг-реакции XXXI с карбонилхлоридными комплексами ниобия и тантала Na[(µ-Cl)₃M₂(CO)₈] (M = Nb, Ta) были трехпалубные получены нейтральные соединения CpFe(n- $C_4H_4BPh)M(CO)_4$ (**XXXIIIb**,c).²⁵ Для получения ванадиевого аналога другой XXXIIIa был использован метод. заключающийся BO взаимодействии гидридного комплекса CpFe(H)(η-C₄H₄BPh) с V(CO)₆.²⁵ Трехпалубный комплекс рения CpFe(η-C₄H₄BPh)Re(CO)₃ (XXXIV) был синтезирован взаимодействии $[CpFe(\eta-C_4H_4BPh)]^$ при с (CO)₃Re(MeCN)₂Br.^{35,36} Интересно, что в случае реакции [CpFe(η- C_4H_4BR]⁻ (R = Me, Ph) с [(CO)₃Mn(MeCN)₃]⁺ вместо ожидаемого железомарганцевого трехпалубного соединения ХХХУ была выделена смесь симметричных комплексов **XXXVI** и **XXXVII** (схема 14). По-видимому, **ХХХУ** в условиях реакции неустойчив и диспропорционирует с образованием значительно более устойчивых симметричных соединений.³⁶

Аналогично **XXXI** с фрагментами (CO)₃M (M = Cr, Mo, W) реагирует комплекс кобальта $[(\eta-C_4H_4BR)_2Co]^-$ (**XXXVIII** R = Ph), давая трехпалубные соединения $[(\eta-C_4H_4BPh)Co(\mu-C_4H_4BPh)M(CO)_3]^-$ (**XXXIX**) (схема 15).^{27,34} Реакции комплексов **XXXVIII** (R = Me, Ph) с ацетонитрильными соединениями $[(CO)_3Mn(MeCN)_3]^+$ или $(CO)_{3}Re(MeCN)_{2}Br$ приводят к 30-электронным нейтральным трехпалубным комплексам (η-C₄H₄BR)Co(µ-C₄H₄BR)M(CO)₃ (**XL**).³⁴ C [(Cod)RhCl]₂ комплекс [(η-C₄H₄BPh)₂Co]⁻ реагирует, давая трехпалубное соединение (η-C₄H₄BPh)Co(µ-C₄H₄BPh)Rh(Cod) (**XLI**).²⁷ Восстановление RuCl₃·3H₂O цинковой пылью в смеси тетрагидрофурана и спирта с последующим взаимодействием с [(η-C₄H₄BPh)₂Co]⁻ дает 42-электронный нейтральный четырехпалубный комплекс {(η-C₄H₄BPh)Co(µ-C₄H₄BPh)₂Co]⁻ дает 42-электронный с (4H₄BPh)₂Co(µ-C₄H₄BPh)₂Co(µ-C₄H₄BPh)₂Co(µ-C₄H₄BPh)Co(µ-C₄H₄BPh)₂Co(µ-C₄H₄BPh)₄Co(µ-C₄H₄BPh)₂Co(µ-C₄H₄BPh)₂Co(µ-C₄H₄BPh)₂Co(µ-C₄H₄BPh)₂Co(µ-C₄H₄BPh)₂Co(µ-C₄H₄BPh)₂Co(µ-C₄H₄BPh)₂Co(µ-C₄H₄BPh)₂Co(µ-C₄H₄BPh)₂Co(µ-C₄H₄BPh)₂Co(µ-C₄H₄BPh)₂Co(µ-C₄H₄BPh)₂Co(µ-C₄H₄BPh)₂Co(µ-C₄H₄BPh)₂Co(µ-C₄H₄BPh)₂Co(µ-C₄H₄BPh)₂Co(µ-C₄H₄BPh)₂Co(µ-C₄H₄BPh)₂Co(µ-C₄H₄BPh)₄Co(µ-C₄H₄BPh)₂Co(µ-C₄H₄BPh)₄Co(µ-C₄H₄BPh)₂Co(µ-C₄H₄BPh)₂Co(µ-C₄H₄BPh)₄CO(µ-C₄H₄BPh)₄Co(µ-C₄H₄BPh)₄CO(µ-C₄H

Схема 15

Описано всего две реакции металлофрагментов с нейтральными сэндвичевыми комплексами, содержащими борольный лиганд. Так было показано, что сэндвичевое соединение CpCo(η -C₄H₄BPh) (**XLIII**) вступает в стэкинг-реакции с фрагментами [Cp*Ir]²⁺ и [(η -C₆Me₆)Ru]²⁺ (в виде их ацетоновых сольватов), давая дикатионные трехпалубные комплексы **XLIVa,b** (схема 16).^{35,36} Соединение **XLIVa** не удается выделить в чистом

виде из-за медленного нуклеофильного расщепления под действием ацетона образованием комплекса $[Cp*Ir(\eta-C_4H_4BPh)]^+$. При с использовании NaI в ацетоне происходит полное расщепление комплекса **XLIVa**. В этих условиях происходит и нуклеофильное расщепление трехпалубного комплекса XLIVb; при этом выделили сэндвичевое соединение $[(\eta - C_6 Me_6)Ru(\eta - C_4 H_4 BPh)]^+$. В последних двух случаях в результате реакций образования трехпалубных комплексов И ИХ нуклеофильного происходит последующего расщепления перенос борольного лиганда с атома кобальта на атомы иридия и рутения.

Как видно из приведенного выше литературного материала, к началу данной работы примеры использования электрофильных стэкинг-реакций для синтеза трехпалубных комплексов с мостиковым борольным лигандом существовали, однако глубоко эта проблема не была изучена. Нам представлялось важным всесторонне изучить закономерности образования целевых соединений, выявить факторы, влияющие на их устойчивость и установить границы применимости данного метода. Этим исследованиям была посвящена настоящая работа.

1.1 Исходные сэндвичевые соединения

Исходный В-циклогексилзамещенный комплекс СрСо(η -С₄H₄BCy)ⁱⁱ (**1**,ⁱⁱⁱ Су = циклогексил) не был описан в литературе. Он был нами получен с высоким выходом путем взаимодействия карбонильного соединения [(η -С₄H₄BCy)Co(CO)₂]₂ с никелоценом (выступающим в качестве источника Ср-лиганда, схема 17), аналогично описанному ранее синтезу Вфенилзамещенного комплекса СрСо(η -С₄H₄BPh).²⁷ Соединение [(η -С₄H₄BCy)Co(CO)₂]₂ в свою очередь было синтезировано при реакции 1циклогексилборолена-З ³⁷ с Со₂(CO)₈ по аналогии с комплексами [(η -С₄H₄BR)Co(CO)₂]₂ (R = Me, Ph).²⁴

Схема 17

^{іі} Все полученные в настоящей работе соединения были охарактеризованы с помощью элементного анализа, а также спектроскопии ЯМР ¹Н и ¹¹В; для ряда соединений были получены масс-спектры высокого разрешения или электронного удара.

^{ііі} Для индексации соединений, используемых и полученных в настоящей работе, используется сквозная нумерация с помощью арабских цифр.

Еще два исходных соединения были синтезированы по описанной методике²⁸ при взаимодействии CpNa с трехпалубным комплексом (η -C₄H₄BPh)Rh(μ -C₄H₄BPh)Rh(η -C₄H₄BPh) (**2**) в TГФ (схема 18). Данная реакция заключается в атаке нуклеофильного агента CpNa по одной из связей Rh…(μ -C₄H₄BPh) соединения **2** (так называемая реакция нуклеофильного расщепления трехпалубных комплексов),³⁶ в результате чего образуются анионный и нейтральный сэндвичевые комплексы Na⁺[Rh(η -C₄H₄BPh)₂]⁻ (**3**) и CpRh(η -C₄H₄BPh) (**4**), соответственно.

Схема 18

Ранее неописанный сэндвичевый комплекс Cp*Rh(η -C₄H₄BPh) (5) был синтезирован нами с умеренным выходом (44%) при взаимодействии йодидного комплекса [(η -C₄H₄BPh)RhI]₄ ³¹ с Cp*Li в тетрагидрофуране (схема 19).

Схема 19

Структуры сэндвичевых комплексов CpRh(η-C4H4BPh) и Cp*Rh(η-C4H4BPh)

Строение комплексов 4 и 5 было дополнительно подтверждено с анализа. Оба рентгеноструктурного помощью комплекса имеют ожидаемые сэндвичевые структуры (рис. 1 и 2), в которых атом родия находится между двумя пятичленными циклами. Плоскости борольного и циклопентадиенильного лигандов практически параллельны (двугранный угол C₅/C₄H₄B составляет 2.4° в случае **4** и 3.7° в случае **5**). Характерной особенностью сэндвичевых комплексов с борольным лигандом является перегиб С₄H₄B-кольца вдоль линии С_а…С_а; при этом атом бора отклоняется от плоскости С₄ в сторону от атома переходного металла. Это связано с большим ковалентным радусом бора по сравнению с углеродом. Например, угол перегиба^{iv} в комплексе (η-C₄H₄BPh)Fe(CO)₃ составляет 6.1°.²⁴ В случае комплексов 4 и 5 наблюдаются существенно меньшие углы перегиба (2.94° и 1.89°, соответственно). Большим ковалентным радусом бора, очевидно, обусловлено и то, что связи Rh-B в комплексах 4 и 5 (2.304 и 2.278 Å, соответственно) заметно длиннее связей Rh-C₄ (2.122-2.198 и 2.149-2.205 Å, соответственно). Сравнение этих длин связей с ранее описанными В литературе родственного ДЛЯ родийсодержащего полуэндвичевого соединения (η-C₄H₄BPh)Rh(PPh₃)₂Cl (Rh-B 2.400 Å; Rh-C₄ 2.137-2.236 Å средн. 2.19 Å)³⁸ показывает, что в комплексах 4 и 5 они несколько короче. Вероятно, эти факты объясняются бо́льшим обратным донированием электронной плотности от атома родия к борольному лиганду в 4 и 5 вследствие сильного электронодонорного эффекта циклопентадиенильных лигандов.

^{iv} Угол перегиба – двугранный угол между плоскостями С-В-С и С₄ борольного кольца.

Рис. 1. Структура комплекса CpRh(η -C₄H₄BPh) (4) (тепловые эллипсоиды 50%-ной вероятности). Избранные расстояния (Å): Rh1–B1 2.304(4), Rh1–C1 2.198(4), Rh1–C2 2.145(4), Rh1–C3 2.122(4), Rh1–C4 2.180(4), Rh1–C11 2.174(4), Rh1–C12 2.195(4), Rh1–C13 2.226(4), Rh1–C14 2.197(5), Rh1–C15 2.150(5), Δ (Rh1···Cp) 1.828(2), Δ (Rh1···C₄H₄BPh) 1.792(2), \angle (Cp/C₄H₄BPh) 2.4(3)°

Глава 1

Рис. 2. Структура комплекса Cp*Rh(η -C₄H₄BPh) (5) (тепловые эллипсоиды 30%-ной вероятности). Избранные расстояния (Å): Rh1–B1 2.278(5), Rh1–C1 2.195(4), Rh1–C2 2.149(4), Rh1–C3 2.157(4), Rh1–C4 2.205(4), Rh1–C11 2.223(4), Rh1–C12 2.187(5), Rh1–C13 2.190(4), Rh1–C14 2.170(4), Rh1–C15 2.199(4), Δ (Rh1···Cp*) 1.822(2), Δ (Rh1···C₄H₄BPh) 1.801(2), \angle (Cp*/C₄H₄BPh) 3.7(1)°

1.2 Взаимодействие комплекса CpCo(η-C4H4BCy) с дикатионными фрагментами [M(ring)]²⁺

Настоящее исследование было начато с изучения возможности стэкинг-реакции нейтрального сэндвичевого соединения CpCo(η -C₄H₄BCy) (1) с дикатионными фрагментами [M(ring)]²⁺ (M(ring) = RhCp*, Ru(arene)). Фрагменты [M(ring)]²⁺ генерировали *in situ* в нитрометане в виде сольватных комплексов [(ring)M(MeNO₂)₃]²⁺ и полученный раствор

добавляли к комплексу 1. В результате нами были получены трехпалубные комплексы 6 и 7a,b с мостиковым борольным лигандом (схема 20).^v Трехпалубные комплексы 6 и 7а, b устойчивы в твердом виде, а также в растворе в нитрометане. Более сильно координирующиеся растворители, такие как ацетон, ацетонитрил и др., вызывают их постепенное разложение. Соединения 6 и 7a,b, а также все другие полученные в настоящей работе трехпалубные комплексы представляют собой яркоокрашенные твердые вещества. Хотя комплексы 6 и 7а, b удалось выделить в индивидуальном виде в виде солей с BF₄⁻-противоионом, однако следует отметить, что присутствие конформационно подвижного циклогексильного заместителя затрудняет их кристаллизацию и делает невозможным исследование методом РСА.

Схема 20

Данные ЯМР ¹Н и ¹¹В для трехпалубных комплексов **6** и **7а,b** согласуются с описанными в литературе для аналогов [СрСо(µ-

^v Как правило, все полученные в настоящей работе катионные комплексы были выделены в виде солей с анионами PF_6^- или BF_4^- . В отдельных случаях из соображений удобства или для выращивания кристаллов были получены комплексы с неокторыми другими анионами (противоионы на схемах и рисунках не показаны).

 $C_4H_4BPh)M(ring)]^{2+}$ (M(ring) = Ru(C_6Me_6), IrCp*), имеющих Ph-заместитель при атоме B.^{35,36} Сигналы протонов, относящихся к карбоциклическим лигандам, находятся в типичных для них областях, а α - и β -протоны борольного кольца наблюдаются в виде характеристичных мультиплетов, составляющих AA'BB'-систему, что также согласуется с литературой.^{24,28}

Следует отметить, что для 6 и 7а,b сигналы протонов борольного кольца смещены в более слабое поле, а сигналы атомов бора – в более сильное поле по сравнению с аналогичными сигналами для сэндвичевого соединения 1.

1.3 Взаимодействие комплексов (η -C₅R₅)Rh(η -C₄H₄BPh) (R = H, Me) с дикатионными фрагментами [LM]²⁺

Мы предполагали, что в случае *B*-фенилзамещенного комплекса родия $CpRh(\eta-C_4H_4BPh)$ (4) электрофильная атака катионным металлофрагментом [(ring)M]ⁿ⁺ может осуществляться по двум положениям: по C₄B-циклу и/или по ареновому заместителю.

Однако оказалось, что при реакции **4** с фрагментом $[CoCp^*]^{2+}$ (генерировали *in situ* в нитрометане в виде сольвата $[Cp^*Co(MeNO_2)_3]^{2+}$) образуется исключительно трехпалубный комплекс **8** (схема 21). Такая селективность электрофильной атаки фрагмента $[CoCp^*]^{2+}$ находится в соответствии с литературными данными, согласно которым этот фрагмент в подобных условиях не реагирует с аренами.³⁹

Глава 1

Схема 21

В то же время при аналогичной реакции 4 с фрагментом $[RhCp^*]^{2+}$ (генерировали *in situ* в виде нитрометанового или ацетонового сольватов) вместо ожидаемого трехпалубного комплекса 9 в качестве основного продукта нами было выделено ареновое производное **10** (схема 22).

Схема 22

С помощью спектроскопии ЯМР ¹Н в нитрометане-d₃ было установлено, что сигналы исходного соединения 4 не наблюдаются уже через 5 мин, а образовавшаяся смесь содержит комплексы 9 и 10 (в соотношении 9:1). Спустя 4 ч интенсивность сигналов трехпалубного соединения 9 сильно понижается, а комплекса 10 – возрастает. В ацетонеd₆ (более сильно координирующимся в сравнении с нитрометаном) превращение 9 в 10 протекает значительно быстрее и полностью прохидит за 30 мин. Полученные данные косвенно указывают на то, что первоначальная атака фрагмента [RhCp*]²⁺ протекает преимущественно по C₄B-циклу, однако образующийся трехпалубный комплекс **9** при комнатной температуре неустойчив и постепенно трансформируется в **10**.

Сходная реакция пентаметилированного соединения Cp*Rh(η -C₄H₄BPh) (5) с фрагментом [RhCp*]²⁺ приводит к образованию устойчивого симметричного трехпалубного комплекса **11** (схема 23), который не изменяется при кипячении в нитрометане (100 °C), в отличие от **9**. Наблюдаемое повышение стабильности **11** по сравнению с **9**, предположительно, связано с увеличением симметрии молекулы, а также с электронным и стерическим влиянием пяти метильных групп.^{vi}

Схема 23

Интересно отметить, что в случае реакции комплекса 5 с неметилированным фрагментом [RhCp]²⁺ образуется смесь трехпалубного

^{vi} Как уже отмечалось в преамбуле к этой главе, меньшая стабильность несимметричных трехпалубных соединений по сравнению с симметричными аналогами является достаточно общей тенденцией и связана с неравномерным распределением электронной плотности в трехпалубном фрагменте M(µ-ring)M', в результате чего облегчается разрыв одной из двух связей M…(µ-ring).

комплекса 11 и аренового производного 10. По-видимому, в этом случае реакция также протекает через промежуточное образование трехпалубного комплекса 9, который помимо превращения В 10 претерпевает симметризацию с образованием 11 (схема 24).

Схема 24

Далее нами было показано, что реакция соединения 4 с фрагментом [IrCp*]²⁺ в нитрометане при комнатной температуре приводит К образованию трехпалубного комплекса 12, а также минорной примеси аренового комплекса **13** (около 6% согласно спектру ЯМР ¹Н; схема 25).

Схема 25

Комплексы 12 и 13 в отличие от диродиевого трехпалубного соединения 9 устойчивы и в условиях реакции не превращаются друг в друга. Использование таких методов разделения, как перекристаллизация или хроматография не позволило очистить трехпалубный комплекс **12** от примеси **13**. Однако было найдено, что при понижении температуры реакции до -15 °C содержание **13** может быть снижено до 4%. Это косвенно указывает на то, что направление электрофильной атаки обусловлено в первую очередь кинетическими факторами. Еще большего снижения содержания примеси (0.8%) удалось достичь путем замены нитрометана на ацетон. Мы предполагаем, что это связано с уменьшением скорости реакции вследствие снижения реакционной способности частиц [Cp*Ir(Solv)₃]²⁺. Использование оптимизированных условий (ацетон, -15 °C) позволило выделить комплекс **12** с чистотой 99%.

Далее было показано, что трехпалубный комплекс 12 (неограниченно устойчивый при комнатной температуре) при кипячении в MeNO₂ (100 °C) в результате реакции симметризации претерпевает превращение в дииридиевое производное 14 (схема 26). Предполагаемый второй продукт – диродиевый трехпалубный комплекс [CpRh(µ-ŋ⁵:ŋ⁵- $C_4H_4BPh)RhCp]^{2+}$ – зафиксировать не удалось, что можно объяснить его малой устойчивостью. К сожалению, скорость реакции оказалась довольно низкой (согласно данным ЯМР ¹Н степень превращения составила примерно 30% за 12 ч), что затрудняет получение 14 таким способом в индивидуальном виде.

Схема 26

Аналогичным образом протекают реакции комплекса **4** с фрагментами [Ru(arene)]²⁺ (arene = мезитилен, гексаметилбензол; схема 27). Основными продуктами этих реакций являются трехпалубные комплексы **15а,b**, а содержание ареновых комплексов **16а,b** не превышает 3% (при проведении реакции при -15 °C в ацетоне).

Схема 27

Интересно отметить, что рутенийсодержащие трехпалубные катионы **15а,b** очень устойчивы и при кипячении в нитрометане остаются неизменными, так что реакция симметризации в этих условиях не наблюдается.

Согласно данным спектроскопии ЯМР ¹Н сигналы протонов борольного цикла C₄B в трехпалубных катионах **8**, **9**, **11**, **12**, **14** и **15**а,**b** заметно смещены в область слабого поля ($\Delta\delta = 0.7 \div 1.3$ м.д.) по сравнению с аналогичными сигналами для исходных сэндвичевых комплексов **4**, **5**. Сигналы атомов бора борольного цикла C₄B в спектрах ЯМР ¹¹B для трехпалубных комплексов **8**, **11**, **12** и **15**а,**b** лежат в интервале $\delta = 10 \div 20$ м.д. и смещены в сильное поле ($\Delta\delta = 1.8 \div 6.6$ м.д.) относительно сигналов атомов бора для моноядерных комплексов **4** и **5**.

Глава 1

Структуры дикатионных трехпалубных комплексов [Cp*Ir(μ -C₄H₄BPh)RhCp](BF₄)₂ и [(η -C₆H₃Me₃)Ru(μ -C₄H₄BPh)RhCp](BF₄)₂

Дополнительное подтверждение строения трехпалубных комплексов $12(BF_4)_2$ и $15a(BF_4)_2$ было получено с помощью рентгеноструктурного анализа. Их структуры состоят из изолированных катионов 12 и 15а (рис. 3 и 4), а также анионов BF₄⁻. Катионы 12 и 15а образованы тремя циклическими л-лигандами, между которыми расположены два атома металла. Плоскости циклических лигандов в обоих случаях практически параллельны (наблюдаемые двугранные углы Cp*/C₄B и C₄B/Cp 0.1 и 1.3° для **12**; C₆/C₄B и C₄B/Cp 2.4 и 1.4° для **15**а); атомы металлов располагаются практически над центроидами колец. Следует отметить, что за счет связывания борольного лиганда co вторым металлофрагментом происходит уплощение цикла, перегиб С₄В-кольца становится незаметен.

Характер связывания в трехпалубных комплексах⁴ предполагает, что заселенность связей, относящихся к двусторонне координированному циклу существенно меньше, чем относящихся к терминальному лиганду. Это должно приводить к удлинению всех связей в мостиковом лиганде по сравнению с терминальным. Данные соображения подтверждаются структурными исследованиями для комплексов [CpNi(µ-Cp)NiCp]BF4,40 $[Cp*Ru(\mu-Cp*)RuCp*]PF_{6}$,⁴¹ Cp*Co(µ-Cp*)CoCp*,⁴² [Cp*Ru(µ- $Cp^*)Mn(CO)_3]PF_6,^{10}$ $(\eta - 1, 3, 5 - C_6 H_3 M e_3) Cr(\mu - 1, 3, 5 - C_6 H_3 M e_3) Cr(\eta - 1, 3, 5 - C_6 H_3 M e_3$ $[(\eta-C_5Me_4H)Fe(\mu-C_5Me_4H)Fe(\eta-C_5Me_4H)]BF_4$ $C_6H_3Me_3$,⁴³ [(ŋ-44 C_5Me_4H)Fe(μ -C₅Me₄H)RuCp)]PF₆ $[(\eta - C_5 Me_4 H)Fe(\mu -$ И С₅Ме₄H)RuCp*]PF₆,⁴⁴ в которых одинаковые карбоциклические лиганды находятся как в мостиковом, так и в терминальном положениях. Для этих комплексов наблюдается систематическое удлинение расстояний С-С, М-
С и М…(и-лиганд), относящихся к мостиковому карбоциклическому лиганду (как правило, удлинение составляет ~ 0.04–0.07 Å). В случае полученных в настоящей работе трехпалубных комплексов 12 и 15а также наблюдается удлинение всех связей в трехпалубном фрагменте Rh(µ-С₄H₄BPh)М по сравнению с соответствующими связями во фрагменте Rh(C₄H₄BPh) сэндвичевого соединения 4. Например, связи B-C (1.593 и 1.617 Å, средн. 1.605 Å) и С-С (1.478, 1.506 и 1.488 Å, средн. 1.491 Å) в борольном кольце катиона 12 заметно длиннее, чем аналогичные связи в 4 (B-C 1.543 и 1.547 Å, средн. 1.545 Å; C-C 1.425, 1.445 и 1.418 Å, средн. 1.429 Å). Кроме того, связи Rh-C₄ (2.174-2.214 Å, средн. 2.19 Å в 12; 2.182–2.216 Å, средн. 2.20 Å в **15**а) длиннее, чем соответствующие связи в 4 (средн. 2.16 Å). В тоже время следует отметить, что длины связей Rh–B (2.303 Å в 4; 2.238, 2.288 Å, средн. 2.26 Å в 12; 2.274 Å в 15а) не подчиняются этой закономерности. Это, по-видимому, связано с тем, что в трехпалубных комплексах 12 и 15а С₄В-кольцо уплощено и его перегиб вдоль линии С_α…С_α незначителен, что и приводит к укорочению длин связей Rh–В по сравнению с сэндвичевым комплексом 4.

Рис. 3. Структура катиона $[Cp*Ir(\mu-C_4H_4BPh)RhCp]^{2+}$ (12) (тепловые эллипсоиды 30%-ной вероятности). Атомы водорода не приводятся. Избранные расстояния (Å): Ir1–B1 2.282(9), Rh1–B1 2.289(8), Ir1–C1 2.215(7), Ir1–C2 2.209(7), Ir1–C3 2.208(7), Ir1–C4 2.232(7), Rh1–C1 2.203(8), Rh1–C2 2.184(7), Rh1–C3 2.181(7), Rh1–C4 2.174(7), Ir1–C16 2.171(8), Ir1–C17 2.168(7), Ir1–C18 2.185(8), Ir1–C19 2.178(7), Ir1–C20 2.151(8), Rh1–C11 2.148(8), Rh1–C12 2.154(9), Rh1–C13 2.164(8), Rh1–C14 2.173(8), Rh1–C15 2.176(8), Δ (Ir1…Cp*) 1.797(3), Δ (Ir1…C4H4BPh) 1.807(3), Δ (Rh1…Cp) 1.792(4), Δ (Rh1…C4H4BPh) 1.778(3), Ir1…Rh1 3.584(3), \angle (Cp*/C4H4BPh) 0.1(5)°, \angle (C4H4BPh/Cp) 1.3(6)°

Рис. 4. Структура катиона $[(\eta-C_6H_3Me_3)Ru(\mu-C_4H_4BPh)RhCp]^{2+}$ (15а) (тепловые эллипсоиды 50%-ной вероятности). Атомы водорода не приводятся. Избранные расстояния (Å): Ru1–B1 2.279(4), Rh1–B1 2.274(5), Ru1–C1 2.212(4), Ru1–C2 2.184(4), Ru1–C3 2.182(4), Ru1–C4 2.205(4), Rh1–C1 2.216(4), Rh1–C2 2.194(4), Rh1–C3 2.182(4), Rh1–C4 2.207(4), Ru1–C16 2.204(4), Ru1–C17 2.226(4), Ru1–C18 2.206(4), Ru1–C19 2.233(4), Ru1–C20 2.200(4), Ru1–C21 2.201(4), Rh1–C11 2.154(4), Rh1–C12 2.161(4), Rh1–C13 2.182(4), Rh1–C14 2.189(4), Rh1–C15 2.166(4), Δ (Ru1···C₆H₃Me₃) 1.693(2), Δ (Ru1···C₄H₄BPh) 1.792(2), Δ (Rh1···Cp) 1.798(2), Δ (Rh1···C4H₄BPh) 1.795(2), Ru1···Rh1 3.587(2), \angle (C₆H₃Me₃/C₄H₄BPh) 2.4(3)°, \angle (C₄H₄BPh/Cp) 1.4(3)°

1.4 Взаимодействие комплекса CpRh(η-C4H4BPh) с монокатионными фрагментами [LM]+ </

В отличие от дикатионных фрагментов $[M(ring)]^{2+}$ монокатионные фрагменты типа $[LM]^+$ реагируют с комплексом 4 несколько иным образом. Так оказалось, что реакции 4 с фрагментами $[RuCp^*]^+$ и $[Co(\eta-C_4Me_4)]^+$ приводят исключительно к ареновым комплексам 17 и 18, ожидаемые трехпалубные соединения не были зафиксированы вовсе (схема 28).

В качестве источника фрагмента [RuCp*]⁺ нами был использован комплекс [Cp*Ru(TГФ)₃]⁺, образующийся при взаимодействии [Cp*RuCl₂]₂ с Zn-пылью и TlBF₄ в тетрагидрофуране. Фрагмент [Co(η -C₄Me₄)]⁺ генерировали при облучении бензольного комплекса [(η -C₄Me₄)Co(C₆H₆)]⁺ видимым светом в хлористом метилене. Аналогичные реакции **4** с фрагментами [M(cod)]⁺ (M = Rh, Ir; cod = циклооктадиен; генерировали путем отщепления хлорид-ионов от [(cod)MCl]₂ под действием AgBF₄ в нитрометане) также привели исключительно к ареновым комплексам **19** и **20**.

Нами было отмечено, что в ходе взаимодействия комплекса 4 с фрагментом [Co(η-C₄Me₄)]⁺ реакционная смесь, первоначально 40 окрашенная в желтый цвет, при облучении видимым светом становится красной. Однако после завершения облучения красный цвет в течение нескольких минут переходит обратно в желтый. Мы предполагаем, что красная окраска соответствует трехпалубному комплексу **21**, который в условиях реакции неустойчив и превращается в более устойчивый ареновый комплекс **18** (желтый) (схема 29). К сожалению, с помощью спектроскопии ЯМР ¹Н не удалось зафиксировать присутствие в реакционной смеси комплекса **21**, по-видимому, из-за его малого времени жизни при комнатной температуре.

Схема 29

Далее нами было показано, что облучение комплекса **18** в хлористом метилене также приводит к развитию красного окрашивания. Оказалось, что в спектрах поглощения в УФ/видимой области полоса $\lambda = 325$ нм, соответствующая ареновому комплексу **18**, смещается в красный регион на $\Delta \lambda = 3$ нм после 2 ч облучения, а после окончания в течение 15 мин восстанавливается исходный спектр. По-видимому, такой малозаметный сдвиг обусловлен тем, что трехпалубный катион **21** присутствует в достаточно низкой концентрации. Вероятно, скорость прямого фотохимического превращения **18** в **21** при комнатной температуре заметно ниже, чем скорость обратного термического процесса.

Нами было установлено, что концентрация комплекса **21** может быть существенно увеличена при проведении облучения при пониженных температурах (до –80 °C) за счет замедления термической реакции (скорость фотохимического процесса слабо зависит от температуры). При этом удалось наблюдать сдвиг полосы поглощения до 25 нм (рис. 5).

Рис. 5. Спектр поглощения раствора комплекса **18** в CH₂Cl₂ после 2 ч облучения при –80°С (прерывистая линия), и после нагревания до +20°С (сплошная линия).

Основываясь на этих данных, мы предполагаем, что в случае фрагмента $[Co(\eta-C_4Me_4)]^+$, а также других монокатионных фрагментов (RuCp*, Rh(cod) и Ir(cod)) первоначальная электрофильная атака протекает по борольному кольцу соединения **4** с промежуточным образованием соответствующих трехпалубных комплексов, которые, однако, неустойчивы и перегруппировываются в ареновые комплексы **17**, **19** и **20**. Наблюдаемая устойчивость гипотетических малая монокатионных трехпалубных комплексов связана, по-видимому, С отсутствием изолобальной аналогии между 14-электронным фрагментом CpRh и 13электронными фрагментами $RuCp^*$, $Co(\eta - C_4Me_4)$ и M(cod) (M = Rh, Ir), что обуславливает несимметричное распределение электронной плотности в молекуле. Для сравнения необходимо отметить, что описанные выше родственные дикатионные трехпалубные комплексы 8, 11, 12, 14 и 15а, b, содержащие два однотипных 14-электронных фрагмента, достаточно устойчивы.

Как было отмечено выше (см. раздел 1.3), в спектрах ЯМР ¹Н трехпалубных катионов **8**, **9**, **11**, **12**, **14** и **15а,b** сигналы протонов борольного цикла C₄B смещаются в область слабого поля ($\Delta \delta = 0.7 \div 1.3$ м.д.) в сравнении с аналогичными сигналами для исходного соединения **4**. В случае ареновых комплексов **10**, **13**, **16а,b** и **17–20** эти сигналы смещены в ту же область относительно **4**, но в существенно меньшей степени ($\Delta \delta = 0.1 \div 0.4$ м.д.). Это указывает на то, что значение химических сдвигов протонов борольного цикла может быть качественным критерием для предварительного отнесения образующихся продуктов к трехпалубным или ареновым комплексам.

По данным спектроскопии ЯМР ¹¹В сигналы атомов бора борольного цикла C₄B для ареновых комплексов **10** и **17–20** находятся в регионе $\delta = 10$ ÷ 14 м.д. и перекрываются с регионом трехпалубных ($\delta = 10 \div 20$ м.д.) и исходных сэндвичевых комплексов ($\delta = 14 \div 22$ м.д.).

Структуры ареновых комплексов [$Cp*Rh(\mu-\eta^6:\eta^5-C_4H_4BPh)RhCp$](BF_4)₂ и [$Cp*Ru(\mu-\eta^6:\eta^5-C_4H_4BPh)RhCp$](BF_4)

Согласно рентгеноструктурного данным анализа структуры ареновых комплексов $10(BF_4)_2$ и $17BF_4$ содержат изолированные катионы 10 и 17 (рис. 6 и 7), а также анионы BF_4^- . Каждый катион состоит из двух сэндвичевых фрагментов: CpRh(η -C₄H₄B) и Cp*M(η -C₆H₅) (M = Rh, Ru), связанных друг с другом σ-связью С-В. Внутри отдельно взятого сэндвичевого фрагмента плоскости циклических лигандов практически параллельны (двугранные углы: Cp*/C₆H₅ и C₄H₄B/Cp 0.5 и 3.5° для 10; Ср*/С₆H₅ и С₄H₄B/Ср 3.6 и 1.5° для **17**). Все связи во фрагменте СрRh(η-С₄Н₄В) катионов 10 и 17 очень близки к аналогичным связям в сэндвичевом соединении 4. Например, связи Rh-C(C₄H₄BPh) как в 10 (2.144-2.188 Å, средн. 2.17 Å), так и в 17 (2.132-2.180 Å, средн. 2.16 Å) близки к соответствующим связям в 4 (средн. 2.16 Å). Это указывает на то, что координация металлофрагмента с π-системой фенильного заместителя не приводит к существенным изменениям в связывании внутри сэндвичевого фрагмента CpRh(η-C₄H₄B). Связи С-С в координированном С₆-кольце комплексов **10** (средн. 1.419 Å) и **17** (средн. 1.418 Å) ожидаемо длиннее, чем аналогичные связи в соединении 4 (средн. 1.391 Å), в котором это кольцо не координированно.

Рис. 6. Структура катиона [Cp*Rh(μ - η^6 : η^5 -C₄H₄BPh)RhCp]²⁺ (10) (тепловые эллипсоиды 50%-ной вероятности). Атомы водорода не приводятся. Избранные расстояния (Å): Rh1–B1 2.227(4), Rh1–C1 2.187(3), Rh1–C2 2.144(3), Rh1–C3 2.159(3), Rh1–C4 2.188(3), Rh1–C11 2.207(4), Rh1–C12 2.188(3), Rh1–C13 2.199(3), Rh1–C14 2.183(3), Rh1–C15 2.204(3), Rh2–C5 2.299(3), Rh2–C6 2.254(3), Rh2–C7 2.247(3), Rh2–C8 2.244(3), Rh2–C9 2.259(3), Rh2–C10 2.263(3), Rh2–C16 2.167(3), Rh2–C17 2.169(3), Rh2–C18 2.164(3), Rh2–C19 2.161(3), Rh2–C20 2.171(3), Δ (Rh1…Cp) 1.832(2), Δ (Rh1…C₄H₄BPh) 1.784(2), Δ (Rh2…Cp*) 1.789(2), Δ (Rh2…C₆H₅) 1.760(1), \angle (Cp*/C₆H₅) 0.5(2)°, \angle (C₄H₄BPh/Cp) 3.5(3)°

Рис. 7. Структура катиона [Cp*Ru(μ - η^6 : η^5 -C₄H₄BPh)RhCp]⁺ (17) (тепловые эллипсоиды 50%-ной вероятности). Атомы водорода не приводятся. Избранные расстояния (Å): Rh1–B1 2.271(3), Rh1–C2 2.178(3), Rh1–C3 2.132(3), Rh1–C4 2.132(3), Rh1–C5 2.180(3), Rh1–C22 2.193(3), Rh1–C23 2.210(3), Rh1–C24 2.194(3), Rh1–C25 2.196(3), Rh1–C26 2.183(3), Ru1–C6 2.240(3), Ru1–C7 2.223(3), Ru1–C8 2.209(3), Ru1–C9 2.197(3), Ru1–C10 2.199(3), Ru1–C11 2.213(3), Ru1–C12 2.165(3), Ru1–C13 2.158(3), Ru1–C14 2.181(3), Ru1–C15 2.193(3), Ru1–C16 2.177(3), Δ (Rh1…Cp) 1.836(2), Δ (Rh1…C₄H₄BPh) 1.783(2), Δ (Ru1…Cp*) 1.802(2), Δ (Ru1…C₆H₅) 1.701(2), \angle (Cp*/C₆H₅) 3.6(2)°, \angle (C₄H₄BPh/Cp) 1.5(3)°

Электрохимическое поведение боролсодержащих комплексов

В рамках совместных исследований с группой проф. Занелло (г. Сиена, Италия) редокс-свойства боролсодержащих комплексов **4**, **8**, **10**, **12** и **15а** были исследованы с помощью метода циклической вольтамперометрии (ЦВА).

Исходный сэндвичевый комплекс 4, являющийся структурным компонентом всех биядерных соединений, в индивидуальном виде показал себя как достаточно малоактивная редокс-система. Было показано, что его раствор в CH_2Cl_2 способен претерпевать лишь необратимое окисление при высоких значениях потенциала. Кулонометрия при контролируемом потенциале показывает расход 1.5 электрона на молекулу, указывая на то, что продукты деструкции образующегося катиона [4]⁺ также являются редокс-активными. Оказалось, что в случае биядерных систем 8, 10, 12 и 15а способность к электронному переносу существенно улучшается. Так, на рис. 8а приведена циклическая вольтамперограмма для дикатионного трехпалубного комплекса [8]²⁺ в растворе хлористого метилена. На ней наблюдается два одноэлектронных восстановительных процесса, имеющих признаки химической обратимости. Помимо этого, вольтамперограмма осложнена ложным пиком, который был отнесен на счет сильного процесса.⁴⁵ Действительно, после исчерпывающего адсорбционного

одноэлектронного восстановления при $E_w = -0.5$ В аномальный процесс уже не наблюдается (рис. 8b). Кроме этого, картина после исчерпывающего восстановления совпадает с первоначальной системой пиков, что подтверждает устойчивость соответствующего монокатиона [8]⁺ не только в масштабе времени ЦВА, но и в ходе продолжительного макроэлектролиза.

Рис. 8. Циклические вольтамперограммы для комплекса [8]²⁺ в CH₂Cl₂ (1.0 $\times 10^{-3}$ моль дм⁻³): (а) исходный раствор; (b) после исчерпывающего одноэлектронного восстановления. Платиновый электрод; поддерживающий электролит [NBu₄][PF₆] (0.2 моль дм⁻³); скорость сканирования 0.2 В с⁻¹.

Совокупность данных ЦВА, полученных при варьировании скорости сканирования в интервале $0.02 \div 1.00$ В с⁻¹, указывает на то, что первый

восстановительный процесс простым, является химически И электрохимически обратимым одноэлектронным процессом: (1)соотношение анодного и катодного токов i_{pa}/i_{pc} постоянно и равно единице; (2) функция $i_{pc} \cdot v^{-1/2}$ также является константой; и (3) разница между пиками приближается к теоретическому значению в 59 мВ. Необходимо подчеркнуть, что наблюдаемая электрохимическая обратимость свидетельствует о сохранении монокатионной частицей [8]⁺ трехпалубной структуры.45

Трехпалубный комплекс $[15a]^{2+}$ также способен претерпевать два последовательных одноэлектронных восстановительных процесса, однако второй процесс необратим. В случае трехпалубного комплекса $[12]^{2+}$ и аренового комплекса $[10]^{2+}$ наблюдалось лишь одно одноэлектронное восстановление. Эти данные указывают на то, что степень химической обратимости восстановительного процесса находится в зависимости от природы фрагментов $[(ring)M]^{2+}$. Также следует отметить, что для всех процессов соотношение анодного и катодного пиков i_{pa}/i_{pc} меньше единицы при низкой скорости сканирования и приближается к единице при увеличении скорости.

В табл. 1 приведены окислительно-восстановительные потенциалы времена соответствующих описывамых комплексов, жизни монокатионных частиц, а также некоторые другие электрохимические характеристики. Особое внимание обращает на себя существенно большая устойчивость продуктов одноэлектронного восстановления трехпалубных монокатионов $[8]^+$, $[12]^+$ и $[15a]^+$ по сравнению с ареновым монокатионом [10]⁺. По-видимому, это связано с высокой делокализацией избыточного электрона в трехпалубных структурах, и низкой степенью такой делокализации в случае [10]⁺.

49

Таблица 1. Формальные электродные потенциалы (В, относительно НКЭ), разница между анодным и катодным пиками (ΔE_p , мВ), соотношение анодного и катодного токов (i_{pa}/i_{pc}) проявляемых комплексами **4**, [**8**]²⁺, [**10**]²⁺, [**12**]²⁺ и [**15**a]²⁺ в CH₂Cl₂, а также времена жизни ($t_{1/2}$, с) электрогенерированных монокатионных частиц.

Комплекс	$E_{\rm p}^{[{\rm a},{\rm b}]}$	$E^{\circ}'_{2^{+/+}}$	$i_{\rm pa}/i_{\rm pc}^{\rm [c]}$	<i>t</i> _{1/2}	$E^{\circ}{}^{\prime}{}_{+\!/0} (\Delta E_{\mathrm{p}})^{\mathrm{[b]}}$	$i_{\rm pa}/i_{\rm pc}{}^{[\rm c]}$
		$(\Delta E_{\rm p})^{[b]}$		(монокатион)		
4	+1.12	_	_	-	-	_
[8] ²⁺	_	-0.04 (70)	1	устойчив	-1.08 (90)	1
[12] ²⁺	_	-0.31 (66)	0.7	12	_	_
[10] ²⁺	$+1.65^{[d]}$	-0.55 (62)	0.4 ^[e]	0.06	_	_
[15 a] ²⁺	_	-0.26 (71)	0.8	26	-1.06 ^[a,b] (-)	_

^[a] Пиковое значение потенциала для необратимых процессов. ^[b] Измерено при скорости сканирования 0.2 В c^{-1} . ^[c] Измерено при скорости сканирования 0.05 В c^{-1} . ^[d] Двухэлектронный процесс. ^[e] Измерено при скорости сканирования 1.0 В c^{-1} .

1.5 Нейтральные трехпалубные комплексы (C4H4BPh)Rh(µ-C4H4BPh)ML

Также мы исследовали стэкинг-реакции анионных сэндвичевых соединений с катионными металлофрагментами. Оказалось, что реакция аниона **3** с фрагментами [Ru(C₅R₅)]⁺, источниками которых являются трисацетонитрильные комплексы [(C₅R₅)Ru(MeCN)₃]⁺ (R = H, Me) приводит к

образованию RuRh трехпалубных комплексов **22а,b** (схема 30).^{vii} Реакция гладко протекает при комнатной температуре в CH_2Cl_2 или $T\Gamma\Phi$ и после хроматографии приводит к чистым продуктам. Аналогичная реакция аниона **3** с катионом $[Cp*Fe(MeCN)_3]^+$ ⁴⁶ дает соответствующий FeRh трехпалубный комплекс **23**.

Схема 30

Сходным образом протекает взаимодействие аниона **3** с кобальтовым комплексом $[(C_4Me_4)Co(MeCN)_3]^+$, который является синтоном фрагмента $[Co(C_4Me_4)]^+$.^{12,47,48} В результате этой реакции в CH₂Cl₂ или ТГФ при комнатной температуре был выделен CoRh комплекс. Ранее было показано, что реакция аниона **3** с комплексом $[(cod)RhCl]_2$ дает Rh₂ трехпалубный комплекс (C₄H₄BPh)Rh(μ -C₄H₄BPh)Rh(cod).⁴⁹ Нами

^{vii} В случае реакций аниона **3** с катионами $[(C_5R_5)Ru(MeCN)_3]^+$ (R = H, Me) и $[(C_4Me_4)Co(MeCN)_3]^+$ наблюдалось образование небольших количеств катионных продуктов (2–3%). Согласно ЯМР ¹Н-спектрам они могут образовываться в результате координации соответствующего полусэндвичевого фрагмента с одной из фенильных групп уже образовавшихся комплексов **22а,b** и **24**, соответственно.

установлено, что аналогичная реакция **3** с [(cod)IrCl]₂ приводит к RhIr комплексу **25**. Комплексы **22–25** были выделены с хорошими выходами (64–86%). Они стабильны на воздухе по крайней мере в течение нескольких часов как в твердом виде, так и в растворе.

Как уже было упомянуто выше, сигналы α- и β-протонов борольного кольца C₄H₄BR в спектрах ЯМР ¹Н обычно наблюдаются в виде характеристичных мультиплетов, составляющих АА'ВВ'-систему.^{24,28} В случае комплексов 22–25 в спектрах ЯМР ¹Н наблюдаются две группы таких мультиплетов в соотношении 1:1, соответствующих терминальным и мостиковым борольным циклам. Отнесение сигналов было сделано нами по аналогии с описанным ранее в литературе симметричным Rh₂ комплексом (C_4H_4BPh)Rh(μ - C_4H_4BPh)Rh(C_4H_4BPh) (2),²² который имеет подобный набор мультиплетов в соотношении 1:2. Интересно отметить, что сигналы протонов мостикового борольного кольца всегда смещены в сильное поле ($\Delta \delta = 0.3 \div 0.9$ м.д.) по сравнению с соответствующими сигналами для терминального борольного кольца. Отсутствие уширения каких-либо сигналов предполагает свободное вращение циклопентадиенильных, борольных и фенильных колец в этих комплексах.

В спектрах ЯМР ¹¹В трехпалубных комплексов **22–25** наблюдаются два синглета, соотвествующих атомам бора в мостиковом и терминальном борольных лигандах. Сигналы атомов бора мостикового борольного лиганда смещены в сильное поле ($\Delta \delta = 9 \div 11$ м.д.) относительно соответствующих сигналов терминального борольного лиганда. Это правилом,¹⁷ находится соответствии с по В которому комплексообразование борсодержащего цикла приводит к сильнопольному сдвигу сигнала ¹¹В. В согласии с этим двусторонняя координация борольного лиганда должна далее приводить к сильнопольному сдвигу по сравнению с односторонне координированным борольным кольцом.

52

Структуры нейтральных трехпалубных комплексов (C₄H₄BPh)Rh(µ-C₄H₄BPh)ML

Дополнительное подтверждение строения комплексов 2 и 22а, b было получено с помощью метода рентгеноструктурного анализа (см. рис. 9–11). Как и ожидалось, комплексы 2 и 22а, b имеют трехпалубную структуру, образованную тремя циклическими лигандами, между которыми располагаются два атома металлов. Плоскости циклических лигандов практически параллельны. В случае Rh₂ комплекса 2 двугранные углы (μ -C₄H₄B)/C₄H₄B составляют 3.2°/4.4°. Для RuRh комплексов 22а (22b) двугранные углы C₅R₅/(μ -C₄H₄B) и (μ -C₄H₄B)/C₄H₄B составляют 1.2° (3.9°) и 3.3° (6.9°), соответственно.

Рис. 9. Структура комплекса (C₄H₄BPh)Rh(μ -C₄H₄BPh)Rh(C₄H₄BPh) (2) (тепловые эллипсоиды 50%-ной вероятности). Атомы водорода не приводятся. Избранные расстояния (Å): Rh1–B1 2.274(6), Rh2–B1 2.293(6), Rh1–B2 2.280(7), Rh2–B3 2.314(6), Rh1–C1 2.200(5), Rh1–C2 2.187(5), Rh1–C3 2.238(5), Rh1–C4 2.248(5), Rh2–C1 2.232(5), Rh2–C2 2.229(5), Rh2–C3 2.182(6), Rh2–C4 2.228(5), Rh1–C11 2.156(5), Rh1–C12 2.121(6), Rh1–C13 2.127(6), Rh1–C14 2.151(5), Rh2–C21 2.148(6), Rh2–C22 2.115(6), Rh2–C23 2.132(6), Rh2–C24 2.183(5), Δ (Rh1… μ -C₄H₄BPh) 1.840(2), Δ (Rh1…C₄H₄BPh) 1.774(2), Δ (Rh2… μ -C₄H₄BPh) 1.844(2), Δ (Rh2…C₄H₄BPh) 1.776(3)

Рис. 10. Структура комплекса CpRu(μ -C₄H₄BPh)Rh(C₄H₄BPh) (22a) (тепловые эллипсоиды 30%-ной вероятности). Атомы водорода не приводятся. Избранные расстояния (Å): Rh1–B1 2.281(6), Rh1–B2 2.297(6), Ru1–B1 2.278(6), Rh1–C1 2.238(5), Rh1–C2 2.205(5), Rh1–C3 2.232(5), Rh1–C4 2.245(5), Ru1–C1 2.208(5), Ru1–C2 2.186(6), Ru1–C3 2.170(5), Ru1–C4 2.205(5), Rh1–C11 2.198(6), Rh1–C12 2.154(6), Rh1–C13 2.131(6), Rh1–C14 2.149(5), Δ (Rh1… μ -C₄H₄BPh) 1.837(2), Δ (Rh1…C₄H₄BPh) 1.791(3), Δ (Ru1… μ -C₄H₄BPh) 1.799(2), Δ (Ru1…Cp) 1.798(2)

Рис. 11. Структура комплекса Cp*Ru(μ-C₄H₄BPh)Rh(C₄H₄BPh) (22b) (тепловые эллипсоиды 30%-ной вероятности). Избранные расстояния (Å): Rh1–B1 2.297(4), Rh1–B2 2.253(5), Ru1–B1 2.309(5), Rh1–C1 2.204(4), Rh1–C2 2.167(5), Rh1–C3 2.209(4), Rh1–C4 2.284(4), Ru1–C1 2.204(4), Ru1–C2 2.168(4), Ru1–C3 2.191(4), Ru1–C4 2.228(4), Rh1–C11 2.194(4), Rh1–C12 2.151(4), Rh1–C13 2.130(4), Rh1–C14 2.149(4), Δ(Rh1···μ-C₄H₄BPh) 1.832(2), Δ(Rh1···C₄H₄BPh) 1.785(2), Δ(Ru1···μ-C₄H₄BPh) 1.818(2), Δ(Ru1···Cp*) 1.787(2)

Взаимная ориентация всех пятичленных колец в 2 и 22а, b является промежуточной между заслоненной и заторможенной, но более близка к заслоненной. Соответствующие торсионные углы (атом кольца)–Ct–Ct'–(56

атом кольца)^{viii} находятся в пределах 5-25° для всех комплексов, минимальные значения (5-9°) наблюдаются для наименее стерически затрудненного соединения **22a**. Взаимная ориентация атомов B. борольных находящихся В двух соседних кольцах, описывается торсионными углами B-Ct-Ct'-B', при этом наблюдаются следующие значения: 49° и 63° (2); 65° (22а); 94° (22b). Фенильные заместители при атомах бора в 2 и 22а, b не параллельны соответствующим борольным циклам, соответствующине двугранные углы лежат в интервале 2-36°.

Как уже упоминалось выше (см. раздел 1.1), структуры комплексов, содержащих терминальный борольный лиганд, характеризуются наличием перегиба у борольного кольца вдоль оси C_{α} ... $C_{\alpha'}$. Это связано с бо́льшим ковалентным радусом атома бора по сравнению с атомом углерода. Координация C₄B-цикла со вторым атомом металла (при образовании трехпалубного комплекса) сводит этот перегиб к минимуму. В случае 2 и **22а,b** центральное кольцо является практически плоским (углы перегиба составляют 0.8, 0.9° и 1.8° соответственно). Терминальные кольца в **2** и **22а,b**, как и ожидается, характеризуются бо́льшими углами перегиба (2.5°/4.9°, 3.8 и 2.0°, соответственно).

Средние расстояния Rh…Rh (3.674 Å для 2), а также Ru…Rh (3.636 Å для 22а и 3.645 Å для 22b), значительно длиннее, чем соответствующая сумма ковалентных радиусов Rh…Rh (~ 2.92 Å) и Ru…Rh (~ 2.95 Å),⁵⁰ что предполагает отсутствие непосредственного взаимодействия металлметалл во всех случаях.

Также выше было отмечено (см. раздел 1.3), что в случае трехпалубных комплексов наблюдается удлинение связей в трехпалубном фрагменте Rh(µ-C₄H₄BPh)M. Выше сравнение этих связей проводилось с

^{viii} Ct и Ct' представляют собой центроиды соответствующих колец.

соответствующими связями во фрагменте Rh(C₄H₄BPh) сэндвичевого соединения 4. В комплексах 2 и 22а, в присутствуют идентичные терминальный и мостиковый борольные лиганды, поэтому становится возможным провести сравнение удлинения/укорочения связей внутри одной молекулы. И действительно, оказалось, что соответствующие расстояния в 2 и 22а, в случае мостикового борольного лиганда заметно длиннее (на 0.01–0.07 Å), чем в случае терминального. В меньшей степени это касается связей Rh-B, для которых эффект возможного удлинения в случае мостикового цикла компенсируется перегибом В случае терминального цикла. Например, связи Rh–B в 2 и 22a для терминального и мостикового колец практически идентичны. Интересно отметить, что наблюдаемые в нейтральных трехпалубных комплексах 2 и 22a,b, а также в описанных выше дикатионных трехпалубных комплексах 12 и 15а, длины связей Rh–B (2.242–2.297 Å) являются наиболее короткими среди структурно охарактеризованных к настоящему моменту борольных комплексов родия: (C₄H₄BPh)Rh(PPh₃)₂Cl (2.400 Å),³⁸ (C₄H₄BMe)₂RhI (2.367 Å),³⁰ [(C₄H₄BPh)RhI]₄ (средн. 2.325 Å)³⁰ и (C₄H₄BPh)Rh(u-I)₃RhCp* (2.296 Å).³¹

Сравнение родственных структур **22а/22b** показывает, что введение пяти метильных групп в циклопентадиенильный лиганд приводит к упрочнению его связывания с атомом Ru и ослаблению связывания Ru…C₄B. В случае металлоценов CpMCp* (M = Fe, Ru) ранее наблюдался сходный эффект (упрочнение связывания Cp*…M и ослабление связывания Cp…M по сравнению с со связыванием в металлоценах Cp₂M).⁹

1.6 Природа связывания в трехпалубных комплексах с мостиковым борольным лигандом

Для лучшего понимания природы связывания в трехпалубных комплексах с мостиковым борольным лигандом, а также факторов, влияющих на их устойчивость, нами были проведены расчеты методом DFT. Энергетические параметры взаимодействия для комплексов [CpM(μ -C₄BH₅)M'Cp]ⁿ⁺ (M, M' = Co, Rh, Ir, Fe, Ru, Os; n = 0–2) были получены с помощью анализа разложения энергии (energy decomposition analysis, EDA^{51,52,53,54,55}) по методу Морокумы-Циглера.^{56,57} Согласно этому методу энергия взаимодействия ΔE_{int} может быть разложена на три составляющие:

$$\Delta E_{\rm int} = \Delta E_{\rm elstat} + \Delta E_{\rm Pauli} + \Delta E_{\rm orb}$$

Энергия электростатического взаимодействия ΔE_{elstat} вычисляется при фиксированном распределении электронной плотности с геометрией комплекса, ΔE_{Pauli} – энергия отталкивания заполненных молекулярных орбиталей, а ΔE_{orb} представляет собой энергию стабилизирующих орбитальных взаимодействий. Соотношение $\Delta E_{\rm elstat} / \Delta E_{\rm orb}$ является электростатического/ковалентного показателем характера связи. Полезность этого метода для анализа природы взаимодействия металллиганд ранее была показана на примере ферроцена и некоторых других сэндвичевых соединений. 53,58

Для начала рассмотрим результаты EDA для моноядерных сэндвичевых комплексов CpM(C₄BH₅) на основе металлов 9 группы (M = Co, Rh, Ir) при использовании частиц $[C_4BH_5]^{2-}$ и $[MCp]^{2+}$ в качестве взаимодействующих фрагментов (табл. 2).

$CpM(C_4BH_5)^{[b]}$								
Μ	$\Delta E_{ m int}$	$\Delta E_{ m orbit}$	$\Delta E_{ m elstat}$	$\Delta E_{ m Pauli}$				
Co	-657.43	-312.59	-538.11	193.27				
		(36.75%)	(63.25%)					
Rh	-638.39	-323.66	-547.10	232.37				
		(37.17%)	(62.83%)					
Ir	-659.52	-350.13	-598.48	289.09				
		(36.91%)	(63.09%)					
$[CpM(C_4BH_5)MCp]^{2+ [c]}$								
Co	-1085.56	-432.69	-1129.26	476.39				
		(27.70%)	(72.30%)					
Rh	-1020.50	-407.51	-1103.30	490.31				
		(26.97%)	(73.03%)					
Ir	-1071.16	-510.02	-1271.21	710.07				
		(28.63%)	(71.37%)					

Таблица 2. Результаты EDA^[a] (ккал моль⁻¹) для комплексов CpM(C₄BH₅)^[b] и [CpM(μ -C₄BH₅)MCp]^{2+ [c]} (M = Co, Rh, Ir).

^[a] На уровне BP86/TZ2P//PBE/L2. ^[b] При использовании $[C_4BH_5]^{2-}$ и $[MCp]^{2+}$ (M = Co, Rh, Ir) в качестве взаимодействующих фрагментов. ^[c] При использовании $[C_4BH_5]^{2-}$ и $2[MCp]^{2+}$ (M = Co, Rh, Ir) в качестве взаимодействующих фрагментов.

Как можно видеть, в случае M = Rh наблюдается наименьшая энергия взаимодействия ΔE_{int} , тогда как для M = Co, Ir величины ΔE_{int} сопоставимы. При этом все значения как связывающих взаимодействий (ΔE_{orb} , ΔE_{elstat}), так и отталкивания Паули ΔE_{Pauli} возрастают при переходе вниз по подгруппе. Такое поведение ΔE_{int} в случае Rh объясняется неполной компенсацией увеличения Паули отталкивания связывающими взаимодействиями. Действительно, ΔE_{Pauli} при переходе от Со к Rh возрастает на 39 ккал моль⁻¹. При этом энергия орбитального ккал моль⁻¹, взаимодействия увеличивается на 11 а энергия электростатического взаимодействия – на 9 ккал моль⁻¹. В целом, для всех металлов связывающие взаимодействия имеют на 37% ковалентный характер и на 63% ионный.

Перейдем теперь к рассмотрению EDA для гомометаллических трехпалубных комплексов металлов 9 группы $[CpM(C_4BH_5)MCp]^{2+}$ (M = Co, Rh, Ir) при использовании в качестве взаимодействующих фрагментов дианиона $[C_4BH_5]^{2-}$ и двух дикатионых частиц $[MCp]^{2+}$ (табл. 2). Интересно, что и в этом случае для M = Rh наблюдается наименьшая энергия взаимодействия. Следует однако отметить, что при переходе от Со к Rh происходит не только увеличение отталкивающего взаимодействия ΔE_{Pauli} но также и уменьшение связывающих взаимодействий ΔE_{orb} и ΔE_{elstat} . Таким образом, в случае Rh₂ трехпалубного комплекса реализуется наименее выгодный способ связывания по сравнению с Co₂- и Ir₂аналогами. Переход от сэндвичевого комплекса к трехпалубному, то есть координация борольного цикла C₄BH₅ со вторым атомом металла, сопровождается некоторым повышением роли электростатического взаимодействия (71-73%, увеличение на ~10%) и соответствующим понижением вклада ковалентного взаимодействия (27-29%).

В табл. З представлены данные EDA-анализа для гомо- и гетерометаллических комплексов металлов 9 группы $[CpM(\mu-C_4BH_5)M'Cp]^{2+}$ при использовании в качестве взаимодействующих фрагментов сэндвичевого комплекса $CpM(C_4BH_5)$ и дикатиона $[M'Cp]^{2+}$ (M, M' = Co, Rh, Ir) с образованием дикатионных комплексов $[CpM(\mu-C_4BH_5)M'Cp]^{2+}$.

Рассмотрим сначала взаимодействия между фрагментами, приводящие к образованию гомометаллических комплексов. Как видно, для Co₂ и Rh₂ комплексов электростатическое притяжение (ΔE_{elstat}) практически одинаковое, в случае Ir₂ комплекса оно существенно выше (~

50 $МОЛЬ^{-1}$). Наименьшее ккал притягивающее орбитальное на взаимодействие (ΔE_{orb}) наблюдается для Rh₂ соединения, наибольшее для Ir₂ производного (больше на 42 ккал моль⁻¹), значение для Co_2 аналога занимает промежуточное положение. Отталкивание Паули (ΔE_{Pauli}) несколько возрастает (на 10 ккал моль⁻¹) при переходе от Co_2 к Rh_2 и достигает максимума в случае Ir_2 комплекса (больше на 77 ккал моль⁻¹ по сравнению с Co₂). В результате полная энергия связывания (ΔE_{int}) для Rh₂ комплекса ниже, чем для Co_2 и Ir_2 аналогов (на 18 и 26 ккал моль⁻¹, соответственно). Аналогичные выводы можно сделать при анализе взаимодействий, приводящих образованию К гетерометаллических комплексов. В целом во всех случаях притягивающие взаимодействия имеют приблизительно на 60% ковалентный характер и на 40% ионный. При этом для дикатионных фрагментов [M'Cp]²⁺ (M' = Co, Rh, Ir) при переходе от Со к Rh и далее к Ir наблюдается последовательное ковалентного возрастание уменьшение ионного характера И взаимодействия приблизительно на 2%.

Дополнительный энергетических характеристик анализ для гетерометаллических комплексов CoRh, CoIr и RhIr показывает, что наибольшее влияние на результирующую величину ΔE_{int} оказывает природа дикатионного фрагмента $[M'Cp]^{2+}$. В тех случаях, когда M' = Rh, систематически наблюдаются существенно меньшие величины ΔE_{int} по M' Co. Ir. Полученные данные сравнению c = согласуются С экспериментально наблюдаемой меньшей стабильностью Rh₂ комплекса 9 по сравнению с CoRh и CoIr аналогами 8 и 12 (см. раздел 1.3).

62

Таблица 3. Результаты EDA (ккал моль⁻¹) для катионов [CpM(μ -C₄BH₅)M'Cp]²⁺ (M, M' = Co, Rh, Ir) при использовании CpM(C₄BH₅) и [M'Cp]²⁺ в качестве взаимодействующих фрагментов.^[a]

[M'Cp] ²⁺	CpM(C ₄ BH ₅)	$\Delta E_{\rm total}$	$\Delta E_{\rm orbit}$ ^[b]	$\Delta E_{\rm elstat}$ ^[b]	$\Delta E_{\mathrm{Pauli}}$
[CoCp] ²⁺	CpCo(C ₄ BH ₅)	-176.41	-211.29	-129.37	164.25
			(62.02%)	(37.98%)	
	CpRh(C ₄ BH ₅)	-178.93	-217.17	-127.72	165.96
			(62.97%)	(37.03%)	
	CpIr(C ₄ BH ₅)	-180.11	-213.60	-130.66	164.15
			(62.05%)	(37.95%)	
[RhCp] ²⁺	CpCo(C ₄ BH ₅)	-156.94	-198.42	-135.31	176.78
			(59.46%)	(40.54%)	
	CpRh(C ₄ BH ₅)	-158.75	-202.13	-130.76	174.14
			(60.72%)	(39.28%)	
	CpIr(C ₄ BH ₅)	-159.65	-199.36	-134.29	174.00
			(59.75%)	(40.25%)	
[IrCp] ²⁺	$CpCo(C_4BH_5)$	-181.15	-242.36	-180.93	242.14
			(57.26%)	(42.74%)	
	CpRh(C ₄ BH ₅)	-182.85	-246.99	-177.06	241.20
			(58.25%)	(41.75%)	
	CpIr(C ₄ BH ₅)	-184.10	-244.24	-181.29	241.43
			(57.40%)	(42.60%)	

^[а] На уровне BP86/TZ2P//PBE/L2. ^[b] Значения в скобках показывают процентный вклад в общие притягивающие взаимодействия.

ГЛАВА 2 ТРЕХ- И ЧЕТЫРЕХПАЛУБНЫЕ КОМПЛЕКСЫ С МОСТИКОВЫМ ДИБОРОЛИЛЬНЫМ ЛИГАНДОМ

Как было отмечено в предыдущей главе, формальная замена одной из частиц CH циклопентадиенильного лиганда C₅H₅ на частицу BH приводит к боролу C₄H₄BH. Аналогичным образом, замена второй CHгруппы на ВН дает диборолил C₃B₂H₅, который является донором и акцептором 3 электронов. Родоначальный диборолил – радикальная высокореакционноспособная частица и в свободном виде неизвестен. Однако Бингером,^{59,60} а позднее Зибертом с сотр.⁶¹ был получен ряд пентазамещенных производных диборолена C₃B₂R₅H. На основе этих соединений была развита химия комплексов переходных металлов с диборолильным лигандом, в том числе трехпалубных и многопалубных. В целом, можно выделить четыре основных подхода, которые были использованы при синтезе таких соединений: 1) реакции, основанные на взаимодействии диборолена или его аниона с комплексами переходных металлов; 2) реакции, основанные на взаимодействии комплексов, уже содержащих диборолильный или дибороленовый лиганд, с другими комплексами переходных металлов; 3) трехкомпонентные реакции, основанные на взаимодействии солей переходных металлов с анионами $[CpCo(C_3B_2R_5)]^-$ в присутствии других анионов, таких как Cp^- , и др.; 4) более реакции, приводящие К получению комплексов высокой нуклеарности за счет отщепления лабильных лигандов под действием высоких температур.

Так, из реакций дибороленов^{іх} с СрСо(СО)₂ наряду с трехпалубным комплексом **XLV** были выделены **XLVI** и четырехпалубный комплекс **XLVII** (схема 31).^{62,63}

Аналогичным образом при реакции комплекса никеля $[(\eta - C_5H_5)Ni(CO)]_2$ с дибороленами наблюдается образование трехпалубного комплекса **XLVIII**, а также соединений **XLIX** и **L** (схема 32).^{61,62}

^{ix} В литературе описано использование дибороленов с различным набором заместителей (как правило, различные комбинации Ме- и Еt-групп, а также некоторых других). В целях упрощения описания заместители не детализируются.

Гетероядерный железокобальтовый трехпалубный комплекс LI был получен в результате реакции диборолена с $[(\eta-C_5H_5)Fe(CO)_2]_2$ и ($\eta-C_5H_5$)Co(CO)₂ одновременно. В этом случае также наблюдалось образование CoFeCo четырехпалубного комплекса LII (схема 33).⁶⁴

Схема 33

Описанные выше реакции протекают при кипячении в высококипящих растворителях (толуол, мезитилен), что приводит к пониженным выходам и малой селективности, так что требуется разделение смеси продуктов. Несколько большей селективности удается достичь при проведении реакций с комплексами, уже содержащими дибороленовый лиганд.

Так кипячение комплекса **XLIX** с [CpNi(CO)]₂ или CpCo(CO)₂ в мезитилене приводит к образованию трехпалубых комплексов **XLVIII** и **LIII**, соответственно. В последнем случае также было зафиксировано образование некоторого количества четырехпалубного комплекса **LIV** (схема 34).^{63,62,65}

66

При проведении сходной реакции соединения **XLVI** с CpCo(CO)₂ в кипящем мезитилене был получен лишь четырехпалубный комплекс **XLVII** (схема 35).^{62,63} Трехпалубные комплексы **XLV** ($\mathbf{R}' = \mathbf{H}$, Me) удалось получить при использовании в качестве исходных более лабильных соединений C₅R'₅Co(C₂H₄)₂ и использовании более мягких условий (нагревание до 40–60 °C).⁶⁶

Нагревание **XLVI** с Mn₂(CO)₁₀ в кипящем мезитилене позволило синтезировать CoMn комплекс **LVII** (схема 36).⁶⁷ Взаимодействие

бис(аллил)никеля с комплексом **XLVI** в относительно мягких условиях (50 °C) приводит к CoNi трехпалубному комплексу **LVIII**.⁶⁸

Также описан ряд превращений бис(дибороленильного) комплекса платины LIX. Его взаимодействие с комплексом (η -C₅H₅)Co(C₂H₄)₂ (2 экв.) позволило синтезировать трехпалубный комплекс LX, тогда как при реакции с (η -C₅H₅)Fe(η -cod) (2 экв.) образуется FePtFe четырехпалубный комплекс LXI (схема 37).⁶⁹ При нагревании LIX в присутствии [(η -C₅H₅)Ni(CO)]₂ в мезитилене были выделены NiPt-трехпалубный комплекс LXII и NiPtNi-четырехпалубный комплекс LXIII.⁶⁹ В этих реакциях, как правило, остаются значительные количества (до 89%) непрореагировавшего исходного комплекса LIX.

Как видно из вышеприведенных реакций, такой подход также далеко не всегда селективен, хотя при использовании мягких условий в некоторых случаях удается достичь высоких выходов.

Реакции солей переходных металлов с сэндвичевыми анионами, содержащими диборолильный лиганд, оказались удобны для синтеза некоторых новых трехпалубных комплексов. Так, реакция FeCl₂·2THF со смесью сэндвичевого аниона **XLVI**⁻ и циклопентадиенил-аниона привела к образованию FeCo комплекса **LI** (схема 38).⁶²

Взаимодействие Ni(acac)₂ с анионами XLVI⁻ и 7,8-C₂B₉H₁₁²⁻ позволило получить CoNi трехпалубный комплекс LXIV с терминальным дикарболлидным лигандом.⁷⁰ При этом наблюдалось побочное образование Co₂ трехпалубного комплекса LXV. С лучшим выходом комплекс LXV был синтезирован в результате реакции CoCl₂ с XLVI⁻ и 7,8-C₂B₉H₁₁²⁻. Сходным образом реакция CoCl₂ с анионами XLVI⁻ и LXVI⁻ позволила получить трехпалубный комплекс LXVII.⁷⁰

При взаимодействии калиевой соли аниона **XLVI**⁻ с галогенидами металлов MX_2 (M = Cr, Mn, Fe, Co, Ni, Cu, Zn) были синтезированы четырехпалубные соединения **XLVII**, **LXVIII**–**LXXIII** (схема 39).^{63,67,71}

Схема 39

Еще один метод синтеза многопалубных соединений на основе диборолильного лиганда основан на отщеплении лабильных лигандов и последующих реакциях образующихся высокореакционноспособных частиц. Так, нагревание трехпалубного комплекса LVIII при 120 °C приводит к образованию четырехпалубного CoNiCo комплекса LXXI (схема 40).⁶⁸ При проведении термолиза комплекса LVIII в присутствии бис(дибороленового) комплекса никеля LXXII (мезитилен, 165 °C), помимо LXXI было выделено некоторое количество шестипалубного комплекса LXXII.

CXEMA 40

Соединение LXXIII наряду с пятипалубным комплексом LXXIV также было получено при кипячении комплекса LXXV с XLVI в мезитилене. При этом наблюдали образование трех- и четырехпалубных комплексов кобальта XLV и XLVII, а также четырехпалубного CoNiCo комплекса LXXI в качестве побочных продуктов.^{68,72} Аналогичная реакция комплексов LXXV и LXXVI позволила получить лишь соответствующий пятипалубный комплекс LXXVII (схема 41).⁶⁸

Схема 41

Основываясь на представленном выше материале можно видеть, что к началу настоящего исследования в отношении синтеза трех- и полипалубных комплексов на основе мостикового диборолильного лиганда были развиты подходы, основанные в значительной степени на использовании высоких температур, что приводило к низким выходам продуктов И малой селективности реакций. целевых Примеры использования электрофильных стэкинг-реакций для синтеза таких соединений в литературе описаны не были. Поэтому представлялось исследовать возможность использования методологии важным области, электрофильного стэкинга В этой установить пределы применимости данного подхода, а также исследовать свойства полученных продуктов.

2.1 Исходные сэндвичевые соединения

Исходное сэндвичевое соединение $CpCo(C_3B_2Me_5)H$ (26) было синтезировано нами при реакции $CpCo(C_2H_4)_2$ с 1,3- $C_3B_2Me_5H$ по слегка

измененной литературной методике.⁶¹ Взаимодействие с BuLi, CpTl или жидким сплавом Na/K приводит к депротонированию **26** и образованию солей сэндвичевого аниона **27** (схема 42). Li⁺ или K⁺ соли аниона **27** для проведения последующих реакций генерировали *in situ*, тогда как таллиевое производное было выделено и охарактеризовано физико-химическими методами.

Схема 42

Соединение 26 представляет собой твердое вещество, очень чувствительное к действию воздуха и влаги. Согласно данным спектроскопии ЯМР ¹Н сигнал гидридного атома водорода наблюдается в виде квадруплета при -8.46 м.д. (J = 4.0 Гц), что указывает на сильное взаимодействие ЭТОГО атома с одной ИЗ метильных групп И свидетельствует о его необычной природе. Комплекс 27T1 также чувствителен к воздуху и влаге, хотя и в значительно меньшей степени, чем 26. Оба соединения очень хорошо растворимы в большинстве обычных органических растворителей.

> Структуры сэндвичевых соединений $CpCo(\eta-C_3B_2Me_5)H u$ [$CpCo(C_3B_2Me_5$]Tl

Выполненное рентгеноструктурное раннее исследование сэндвичевого соединения CpCo(1,3-C₃B₂Et₄MeH),⁶⁷ родственного 26, не позволило различить связан ли «экстра»-водородный атом только с углеродом или он присутсвует в виде СНВ-мостика, хотя Со-Н гидрид и структуру с агостическим взаимодействием Со…Н…С удалось исключить. Позже был проведен рентгеноструктурный анализ для производного $CpCo\{(C_3H_6C)_2(BMe)_2CHMe\}$.⁷³ Однако оказалось, что в этом случае молекулы. наблюдаются две независимые которые отличаются положением «экстра»-водородного атома. В одном случае молекула содержит мостиковую связь С-H···B (С-H 1.00, B···H 1.57 Å), тогда как в другом атом водорода связан исключительно с атомом углерода (С-Н 0.90, В…Н 1.71 Å). Кроме того в литературе имеется краткое упоминание о рентегеноструктурном и нетронографическом исследовании родственного комплекса железа (C_6H_5Me)Fe(1,3- $C_3B_2Et_4MeH$),⁷¹ который содержит CHBмостик. Мостиковый атом водорода разупорядочен по двум независимым положениям, взаимодействуя только с одним из двух атомов бора (расстояния С-Н и В-Н составляют 1.13, 1.14 и 1.53, 1.51 Å, соответственно).

26 было Строение комплекса исследовано С помощью рентгеноструктурного анализа при 100 К (рис. 12). Было найдено, что С₃В₂Ме₅-лиганд разупорядочен по двум положениям. С помощью разностного Фурье-синтеза был найден пик остаточной электронной плотности, который был приписан «экстра»-водородному атому. Его удалось локализовать для одного из положений C₃B₂Me₅-лиганда. Этот Hатом является мостиковым между атомами углерода и бора (С-Н...В; С-Н 1.20, В…Н 1.70 Å). С6-В1 связь (1.633 Å) длиннее на 0.13 Å, чем С6-В2 (1.506 Å) из-за участия первой в мостиковой связи С-Н. В. Кроме того,

связь C7–B1 (1.529 Å) длиннее связи C8–B2 (1.642 Å) на 0.11 Å; длина связи C7–C8 составляет 1.481 Å.

Рис. 12. Структура комплекса $CpCo(\eta-C_3B_2Me_5)H$ (26) (тепловые эллипсоиды 50%-ной вероятности). Атомы водорода, за исключением мостикового атома H6 не приводятся. Показан только один из двух разупорядоченных наборов атомов. Избранные расстояния (Å): Co1–C1 2.050(3), Co1–C2 2.052(3), Co1–C3 2.047(3), Co1–C4 2.059(3), Co1–C5 2.049(3), Co1–C6 2.047(14), Co1–C7 2.048(3), Co1–C8 2.049(6), Co1–B1 2.033(8), Co1–B2 2.058(3), C6–H6 1.20, B1…H6 1.70, Co1…Cp 1.665(1), Co1…C₃B₂ 1.573(1).

Структура комплекса 27Tl также была установлена с помощью рентгеноструктурного анализа при 100 К (рис. 13). Пятичленные циклы Ср и С₃B₂ в комплексах 26 и 27Tl имеют заслоненную ориентацию, плоскости

лигандов практически параллельны (двугранные углы C_3B_2 /Ср составляют 1.1 и 0.6°, соответственно). В обоих комплексах C_3B_2 -цикл почти плоский с незначительным перегибом вдоль линии В····В (~ 2.0°). Атомы Со в **26** и **27**Tl расположены практически над центроидами колец; атом Tl в **27**Tl сдвинут от C_3B_2 -центроида в направлении атома C5 на 0.17 Å, что меньше, чем соответствующий сдвиг в аналогичном комплексе CpCo(C₃B₂Me₄H)Tl (0.24 Å).⁷⁴ Атомы углерода метильных групп в **26** и **27**Tl отклонены на ~ 0.1 Å от плоскости C₃B₂-кольца в направлении атома Co.

Рис. 13. Структура комплекса [CpCo(C₃B₂Me₅]Tl (**27**Tl) (тепловые эллипсоиды 50%-ной вероятности). Атомы водорода не приводятся. Избранные расстояния (Å): Co1–C1 2.060(4), Co1–C2 2.060(6), Co1–C3 2.063(4), Co1–C4 2.059(4), Co1–C5 2.055(5), Co1–B1 2.078(4), Tl1–C4

2.890(4), Tl1–C5 2.757(5), Tl1–B1 2.801(4), Co1···Cp 1.667(1), Co1···C₃B₂ 1.600(1), Tl1···C₃B₂ 2.502(1).

Расстояния металл…цикл[×] в комплексе **26** (Co…Cp 1.665, Co…C₃B₂ 1.573 Å) близки к аналогичным в упомянутом выше аналоге CpCo(1,3-C₃B₂Et₄MeH) (Co…Cp 1.665, Co…C₃B₂ 1.560 Å).⁶⁷ Расстояния металл…цикл в комплексе **27**Tl (Co…Cp 1.667, Co…C₃B₂ 1.600, Tl…C₃B₂ 2.502 Å) практически те же, что и в CpCo(C₃B₂Me₄H)Tl (Co…Cp 1.67, Co…C₃B₂ 1.60, Tl…C₃B₂ 2.47 Å);⁷⁴ расстояние Co…C₃B₂ в **27**Tl длиннее на 0.03 Å, чем в **26**.

В кристалле таллиевое производное аниона **27** находится в виде индивидуальных молекул (расстояние от атома Tl до ближайшего атома соседней молекулы составляет более 3.6 Å) и не образует полимерной зигзагообразной цепи, которая характерна для структуры CpTl.⁷⁵

Природа связи в сэндвичевом комплексе СрСо(1,3-С₃B₂Me₅H)

В противоположность ВНВ-мостикам, широко распространенным, например, в нидо-карборанах,⁷⁶ известные примеры СНВ-мостиков ограничены, в основном, нидо-2,3,5-трикарбагексаборанами.⁷⁷ Несимметричный характер такого мостика (С–Н…В) был установлен с помощью рассчетного исследования.⁷⁸ Присутствие подобного мостика также было установлено с помощью рентгеностурктурного анализа на примере одного необычного изоарахно-RuCNB₉-кластера.⁷⁹

Комплексы CpCo(1,3-C₃B₂R₅H) с дибороленовыми лигандами впервые были получены в 1983 Зибертом с сотр. при реакции комплекса Йонаса CpCo(C₂H₄)₂ с C₃B₂R₅H в течение ночи.⁶⁷ Для описания природы

^х Расстояние металл…цикл – кратчайшее расстояние от атома металла до плоскости лиганда.

связывания в образующихся комплексах были предложены различные структуры, имеющие «экстра» водородный атом либо при атоме Со [**A** (гидридная форма CoH) или **B** (структура с агостическим атомом водорода CoHC)], либо расположенный на внешней стороне диборолильного кольца [**C** (*эндо*-CH связь) ог **D** (CHB-мостик)] (рис. 14).^{хі} Интересно отметить, что проведение реакции CpCo(C₂H₄)₂ с C₃B₂R₅H в течение короткого времени (1–3 ч.) с последующей TCX позволило выделить как CoH (**A** или **B**), так и CH (**C** или **D**) изомеры в практически равных количествах.^{80,81} Однако СоH-изомер нестабилен и быстро превращается в CH-изомер, что объясняет выделение только одного изомера при продолжительной реакции (в течение ночи).

Рис. 14. Возможные структуры комплекса $CpCo(1,3-C_3B_2R_5H)$, предложенные в работе [67].

^{хі} В этом разделе мы следуем теминологии, используемой Граймсом, который различает соединения с эндо-СН и СНВ мостиками.⁷⁶ Напротив, Шлайер и др. не делают четкого различия между такими соединениями.⁷⁸

Проведенное производного $CpCo(1,3-C_3B_2Et_4MeH)$ ДЛЯ рентгеноструктурное исследование хотя и исключило формы А и В, однако не позволило сделать отнесение в пользу структуры C или D.⁶⁷ EHи INDO МО-расчеты также не помогли решить эту проблему.⁶⁷ Более структурное исследование производного позднее ДЛЯ СрСо{(С₃H₆C)₂(BMe)₂CHMe} выявило наличие в кристаллической ячейке ДВУХ независимых молекул, В которых атом «экстра»-водорода локализован различным образом.⁷³ В одной из молекул имеется С-Н...Вмостик (С–Н 1.00, В···Н 1.57 Å; структура, близкая к форме **D**), тогда как другая содержит атом водорода, связанный исключительно атомом углерода (С–Н 0.90, В···Н 1.71 Å; структура, близкая к форме С). Также имеется краткое упоминание рентгеноструктурном 0 И нейтронодифракционном исследованиях для родственного комплекса железа (C_6H_5Me)Fe(1,3- $C_3B_2Et_4MeH$),⁷¹ в котором наблюдается связывание с образованием С-Н. В-мостика (форма **D**). В этом случае СНВмостиковый атом водорода разупорядочен по двум независимым положениям, так что наблюдается взаимодействие с одним из двух атомов бора (наблюдаются расстояния С-Н и В-Н 1.13, 1.14 и 1.53, 1.51 Å, соответственно).

Как было описано выше, для комплекса **26** нами было проведено структурное исследование при 100 К, согласно которому «экстра»-атом водорода удалось локализовать как мостиковый между атомами углерода и бора (С–Н…В; С–Н 1.20, В…Н 1.70 Å). Кроме этого, мы провели полноэлектронные скалярно-релятивистские расчеты методом DFT (на уровне PBE/L2). Рассчитанные для **26** расстояния металл-(циклический лиганд) (Со…Ср 1.651, Со…С₃B₂ 1.564 Å) лишь немного короче, тех что были определены с помощью метода PCA (на 0.014 и 0.009 Å, соответственно), что подтверждает достоверность результатов расчетов.

80

Как видно из рис. 15, комплекс **26** содержит атом водорода в мостиковом положении между атомами углерода и бора (структура, близкая к форме **D**; рис. 14). Обращает на себя внимание то, что расстояние C6–H6 (1.158 Å) значительно короче, чем расстояние B1–H6 (1.503 Å). Связь C6–B1, имеющая водродный мостик (1.714 Å) существенно длиннее, чем связь C6–B2 (1.573 Å).

Рис. 15. Оптимизированная структура для комплекса **26** (на уровне PBE/L2). Все атомы водорода, за исключением мостикового атома H6 не приводятся. Избранные расстояния (Å): C6–H6 1.158, B1–H6 1.503, C6–B1 1.714, C6–B2 1.573, Co[…]Cp 1.651, Co[…]C₃B₂ 1.567.

Комплекс **26** существует в виде смеси двух энантиомеров. Как было найдено, барьер активации для их трансформации составляет всего 0.5 ккал моль⁻¹, что предполагает их быстрое взаимопревращение даже при низких температурах (Рис. 16). Переходное сотояние имеет C_s -симметрию и соответствует форме **С**, имеющей эндо-СН-водород.

Рис. 16. Внутренняя координата реакции для энантиомеризации комплекса **26** (на уровне PBE/L2).

В табл. 4 суммированы рассчитанные расстояния С–Н и В…Н, а также порядки связей по Майеру (Mayer bond orders, MBO) для металлакарборанов $M(C_5R_5)(C_3B_2Me_5H)$ (R = H, Me; M = Co, Rh, Ir). Как видно, введение метильных групп в Ср-циклы оказывает лишь незначительное влияние на связывание мостиковоого атома водорода.

Сравнение однотипно замещенных производных различных металлов указывает на ослабление взаимодействия С–Н в следующем ряду: CoCp > RhCp > IrCp, что сопровождается усилением взаимодействия В…Н. Также следует отметить, что, несмотря на значительно более длинные расстояния В…Н по сравнению с С–Н, наблюдаемые довольно большие величины MBO (0.22 ÷ 0.25) предполагают наличие существенного связывания атома водорода с бором.

Таблица	4.	Расстояния	С–Н	И	В…Н	$(Å)^{[a]},$	a	также	порядки	связи	ПО
Майеру (в	ск	собках) ^[b] для	CHB-	мо	остико	вых ког	мп	лексов.			

Комплекс	С–Н	В…Н
$CoCp(C_3B_2Me_5H) (26)$	1.158 (0.70)	1.503 (0.24)
$CoCp*(C_3B_2Me_5H)$	1.156 (0.70)	1.506 (0.24)
$RhCp(C_3B_2Me_5H)$	1.160 (0.70)	1.484 (0.24)
$RhCp^{*}(C_{3}B_{2}Me_{5}H)$	1.157 (0.71)	1.495 (0.24)
$IrCp(C_3B_2Me_5H)$	1.162 (0.68)	1.474 (0.24)
$IrCp^*(C_3B_2Me_5H)$	1.161 (0.68)	1.477 (0.24)

^[a] На уровне PBE/L2. ^[b] На уровне BP86/def2-TZVPP.

В соответствии с расчетами СоН-изомер соединения **26**, *изо*-**26**, должен иметь Со–Н···В-мостик с расстояниями Со–Н и В····Н, равными 1.524 и 1.510 Å, соответственно (рис. 17, структура, близкая к гидридной форме **A**; см. рис. 14).^{xii} Присутствие гидридного водорода приводит к значительным структурным изменениям по сравнеию с **26**. Расстояние

^{хіі} Форма Со–Н····В значительно более стабильна, чем форма Со–Н····С.

Со…С₃В₂ (1.717 Å) становится гораздо длиннее (на 0.15 Å), чем в **26**, тогда как Со…Ср (1.660 Å) остается практически тем же самым. Угол расклинивания между Ср- и С₃В₂-плоскостями равен 15.9° (для сравнения: 1.5° в **26**). Кольцо С₃В₂ имеет перегиб вдоль линии В…В на 8.8° (2.0° в **26**). В целом. Комплекс *изо*-**26 1** на 10.1 ккал моль⁻¹ менее стабилен, чем **26**, что и объясняет экспериментально наблюдаемую его быструю трансформацию в **26**.

Табл. 5 сордержит данные по Со-Н и В…Н расстояниям, а также MBO для гидридных металлакарборанов $MH(C_5R_5)(C_3B_2Me_5)$ (R = H, Me; M = Co, Rh, Ir), а также их относительные энергии в сравнении с CHBмостиковыми изомерами M(C₅R₅)(C₃B₂Me₅H). Как видно, гидридные изомеры оказались менее стабильными во всех случаях. Тем не менее, их стабильность возрастает при перемещении вниз по подгруппе от кобальта к иридию. Величины зарядов МВО указывают на упрочнение М-Нвзаимодействия ослабления В…Н-взаимодействия И той В же последовательности. Метилирование Ср-кольца не приводит к значительному эффекту.

Таблица 5. Относительные энергии (ккал моль⁻¹), расстояния М–Н и В…Н (Å)^[a], а также порядки связи по Майеру (в скобках)^[b] для гидридных комплексов.

Комплекс	$E_{\rm rel}^{[c]}$	М–Н	В…Н
CoHCp(C ₃ B ₂ Me ₅) (<i>iso</i> - 26)	10.1	1.524 (0.50)	1.510 (0.36)
CoHCp*(C ₃ B ₂ Me ₅)	9.6	1.530 (0.53)	1.478 (0.34)
RhHCp(C ₃ B ₂ Me ₅)	7.1	1.620 (0.67)	1.603 (0.24)
RhHCp*(C ₃ B ₂ Me ₅)	7.1	1.633 (0.64)	1.560 (0.26)

84

IrHCp($C_3B_2Me_5$)	5.0	1.620 (0.74)	1.750 (0.15)
IrHCp*(C ₃ B ₂ Me ₅)	5.1	1.627 (0.72)	1.695 (0.17)

^[a] На уровне PBE/L2. ^[b] На уровне BP86/def2-TZVPP. ^[c] Относительно СНВ-мостиковых изомеров, с ZPE коррекцией.

Рис. 17. Оптимизированная структура комплекса *изо-26* (на уровне PBE/L2). Все атомы водорода за исключением гидридного атома H6 не приводятся. Избранные расстояния (Å): B1–H6 1.510, Co–H6 1.524, Co…Cp 1.660, Co…C₃B₂ 1.717.

Механизм реакции образования комплексов 26 и изо-26

Также нами проводились расчеты механизма образования комплексов **26** и *изо-***26** (на уровне BPBE/L2). Как было постулировано ранее, комплекс CpCo(C₂H₄)₂ реагирует с различными лигандами по диссоциативному механизму.⁸² Как было вычислено, энергия диссоциации CpCo(C₂H₄)₂ (с образованием 16-электронных частиц CpCo(C₂H₄) и C₂H₄) составляет 22.4 ккал моль⁻¹ (в литературе приведена величина 21.7 ккал моль⁻¹, вычисленная на уровне BP86/LACVP(d,p)⁸²). Эти значения корреллируют со способностью комплекса Йонаса обменивать этилен при комнатной температуре.

Дибороленовый лиганд $C_3B_2Me_5H$ существует преимущественно в виде конформера, приведенного на рис. 18; он более стабилен, чем другой возможный конформер на 2.9 ккал моль⁻¹ (причем образованию последнего дополнительно препятствует энергия активации 5.2 ккал моль⁻¹).

Рис. 18. Оптимизированные структуры дибороленовых лигандов $C_3B_2Me_5H$ (слева) и $C_3B_2MeH_5$ (справа) (на уровне BPBE/L2). Все атомы водорода, за исключением «экстра» H-атома не приводятся.

Этот лиганд может реагировать с частицей СрСо(С₂H₄) своими неэквивалентными сторонами, приводя таким образом ДВУМЯ К образованию либо 26, либо изо-26. Используя расчеты внутренней координаты реакции (intrinsic reaction coordinate, IRC; на уровне PBE/L2) получили пути peakции (the reaction paths) для модельного ΜЫ монометилированного дибороленового лиганда C₃B₂MeH₅. Исходное взаимодействие этого лиганда с координационно-ненасыщенной частицей $CpCo(C_2H_4)$ протекает без какого-либо барьера, давая интермедиаты **IM1a** или IM1b (рис. 19). В этих интермедиатах диборолен выступает как олефиновый лиганд.

Рис. 19. Оптимизированные структуры интермедиатов **IM1a** и **IM1b** (на уровне BPBE/L2). Все атомы водорода, за исключением «экстра» Н-атома не приводятся.

На рис. 20 приведены графики IRC для элиминирования C₂H₄ от интермедиатов **IM1a** и **IM1b**. **IM1a** элиминирует C₂H₄, напрямую давая монометилированный CHB-мостиковый комплекс **26'**; этот процесс экзотермичен на 17.2 ккал моль⁻¹ [на 22.7 ккал моль⁻¹ для

пентаметилированного производного].^{xiii} Элиминирование C₂H₄ от **IM1b** первоначально дает интермедиат **IM2**, имеющий метильную группу в мостиковом положении между атомами углерода и бора (C–Me···B). В целом, элиминирование C₂H₄ от **IM1a** и **IM1b** протекает с очень близкими энергиями активации: 23.1 и 22.5 [21.2 и 21.1] ккал моль⁻¹,^{xiv} соотвтетственно, что объясняет образование изомеров **26** и *изо*-**26** в практически равных количествах, когда реакцию CpCo(C₂H₄)₂ с C₃B₂Me₅H проводят в течение короткого времени.⁸¹

^{хііі} Здесь и далее величины, относящиеся к пентаметилированным производным, даны в квадратных скобках.

^{xiv} Эта стадия является скорость-определяющей для трансформации **IM1b** в *iso*-1'.

Рис. 20. Внутренняя координата реакции (на уровне PBE/L2) для трансформации интермедиатов **IM1a,b** в **26'** и **IM2**. Соответствующие значения энергий приведены в табл. 6.

Таблица 6. Относительные энергии (ккал моль⁻¹) ^[а] для механизма образования и изомеризации моно- и пентаметилированных комплексов **26'/26** и *изо*-**26'/26**.

	Монометилированные	Пентаметилированные					
	комплексы 26'/изо-26'	комплексы 26/изо-26					
Трансформация IM1a,b в 26' и IM2 (см. рис. 20)							
IM1a,b	0	0					
TS1a	23.1	21.2					
TS1b	22.5	21.1					
$26' + C_2H_4$	-17.2	-22.7					
$\mathbf{IM2} + \mathbf{C}_2\mathbf{H}_4$	-5.3	-11.7					
Трансф	бормация IM2 в изо-26' (см. рис. 21)					
IM2	0	0					
TS2	6.5	6.1					
IM3	1.1	1.2					
TS3 ^[b]	1.7	2.8					
	0.6	1.6					
iso- 26'	-3.8	-2.4					
Изомеризация изо-26' в 26' (см. рис. 22)							
iso- 26'	0	0					
TS3	5.5	5.3					

IM3	4.9	3.7
TC4 [b]	22.3	24.9
184	17.4	21.2
26'	-9.8	-9.8

^[а] На уровне BPBE/L2 с ZPE-коорекцией. ^[b] Высота барьера дана курсивом.

На рис. 21 приведена IRC-кривая для дальнейшей трансформации IM2. Первоначально он превращается в CoHC-гидридный интермедиат IM3 через переходное состояние TS2 с координированным по металлу sp³атомом углерода (структура, сходная с формой **B**; см. рис. 14). Дальнейшая изомеризация IM3 в CoHB-гидридный комплекс *изо*-26' протекает через переходное состояние TS3, имеющее μ_3 -H атом. Обе стадии имеют низкие энергии активации, 6.5 и 0.6 ккал моль⁻¹, соответственно. В целом, трансформация IM1b в *изо*-26' является экзотермичной на 9.1 ккал моль⁻¹.

Рис. 21. Внутренняя координата реакции (на уровне PBE/L2) для трансформации интермедиата **IM2** в *изо*-**26**[']. Соответствующие значения энергий приведены в табл. 6.

Рис. 22 иллюстрирует механизм изомеризации СоНВ-гидридного комплекса *изо*-26' в СНВ-мостиковый комплекс 26'. Пернвоначально *изо*-26' конвертируется в СоНС изомер IM3 через переходное состояние TS3 (эта стадия является обратной стадии 2 на рис. 21). Далее происходит перенос гидрида через переходное состояние TS4, в е\котором СНВ-мостиковый атом водорода расположен практически в плоскости C_3B_2 -кольца. Изомеризация *изо*-26' в 26' является экзотермичной на 9.8 ккал моль⁻¹ и, в целом, имеет энекргию активации 22.3 ккал моль⁻¹. Величина

этого барьера корреллирует с экспериментально наблюдаемой медленной изомеризацией *изо*-26 при комнатной температуре.

Рис. 22. Внутренняя координата реакции (на уровне PBE/L2) для изомеризации *изо-26*' в **26**'. Соответствующие значения энергий приведены в табл. 6.

Анализ разложения энергии

Связывание металл–диборолил в родоначальном незамещенном комплексе таллия $CpCo(1,3-C_3B_2H_5)T1$ мы сравнили с родственными производными щелочных металлов $CpCo(1,3-C_3B_2H_5)M$ (M = Li, Na, K), используя анализ разложения энергии EDA (см. раздел 1.6).

Данные EDA для комплексов CpCo(1,3-C₃B₂H₅)M (M = Tl, Li, Na, K, RuCp) при использовании [CpCo(1,3-C₃B₂H₅)]⁻ и M⁺ в качестве взаимодействующих фрагментов, даны в табл. 7.

Для всех производных щелочных металлов отталкивание Паули ΔE_{Pauli} практически неизменно. Как электростатическое притяжение ΔE_{elstat} , так и притягивающее орбитальное взаимодействие ΔE_{orb} увеличиваются при переходе от К к Li, что и приводит к возрастанию полной энергии взавимодействия ΔE_{int} . Относительно больший рост ΔE_{orb} по сравнению с ΔE_{elstat} приводит к более ковалентному характеру связи М–диборолил для лития (28.5%) по сравнению с натрием и калием (19.3%).

Для таллиевого производного как ΔE_{elstat} , так и ΔE_{orb} выше, чем соответствующие величины для литиевого аналога на ~20 ккал моль⁻¹, однако этот стабилизирующий эффект перекрывается увеличением ΔE_{Pauli} на 56 ккал моль⁻¹, что и объясняет более слабое связывание в случае Tl⁺ в сравнении с Li⁺. Связь Tl–диборолил (32.2%) имеет несколько более ковалентный характер, чем связь Li–диборолил (28.5%).

В целом можно сделать вывод, что связывание аниона $[CpCo(1,3-C_3B_2H_5)]^-$ с Tl⁺ является более ковалентным, чем со щелочными металлами. При этом энергия взаимодействия между фрагментами $[CpCo(1,3-C_3B_2H_5)]^-$ и M⁺ возрастает в следующем ряду: K < Na < Tl < Li.

Таблица 7. Результаты EDA (ккал моль⁻¹) для комплексов CpCo(1,3-C₃B₂H₅)М при использовании [CpCo(1,3-C₃B₂H₅)]⁻ и M⁺ в качестве взаимодействующих фрагментов.^[а]

Μ	$\Delta E_{\rm int}$	$\Delta E_{\mathrm{Pauli}}$	$\Delta E_{\rm elstat}^{\rm [b]}$	$\Delta E_{\rm orb}^{[b]}$
Li	-154.8	31.9	-133.5 (71.5%)	-53.2 (28.5%)

93

Na	-127.7	25.6	-123.8	-29.5
			(80.8%)	(19.3%)
К	-111.8	20.1	-114.5	-27.4
		50.1	(80.7%)	(19.3%)
T1	-138.8	88.3	-154.0	-73.1
			(67.8%)	(32.2%)

^[a] На уровне BP86/TZ2P//PBE/L2. ^[b] Значения в скобках показывают процентный вклад в общие притягивающие взаимодействия.

2.2 Нейтральные трехпалубные комплексы

2.2.1 Нейтральные трехпалубные комплексы $CpCo(\mu-C_3B_2Me_5)M(ring)$

Используя диборолил-содержащий анионный сэндвичевый комплекс 27, мы продолжили исследование возможности использования реакций электрофильного стэкинга для синтеза трехпалубных комплексов. Оказалось, что аналогично описанным в разделе 1.5 реакциям аниона 3 с различными металлофрагментами, в случае аниона 27 также образуются целевые комплексы. Реакции, как правило, гладко протекают при комнатной температуре в CH_2Cl_2 или $T\Gamma\Phi$, а последующая хроматография позволяет выделить продукты в чистом виде. Так, взаимодействие 27 с фрагментами $[Fe(C_5R_5)]^+$, источниками которых являются, трисдиметилсульфидный комплекс [CpFe(SMe₂)₃]⁺ и трис-ацетонитрильный комплекс $[Cp*Fe(MeCN)_3]^+$ (R = H, Me), соответственно, приводит к образованию трехпалубных комплексов 28а, b (схема 43). Аналогичная реакция аниона 27 с ацетонитрильными комплексами $[(C_5R_5)Ru(MeCN)_3]^+$ $(\mathbf{R} = \mathbf{H}.)$ Ме) и [C₄Me₄Co(MeCN)₃]⁺ (являющимися источниками 94

соответствующих частиц [M(ring)]⁺]) дает трехпалубные комплексы **29а,b** и **30** с хорошими выходами.

Схема 43

образом комплексы 28–30 обладают 30 Полученные таким валентными электронами, что соответствует стабильной электронной комплексов.4 трехпалубных Кобальтожелезные конфигурации для трехпалубные комплексы 28а, b устойчивы только в инертной атмосфере, тогда как CoRu- и Co₂-соединения 29,30 стабильны на воздухе в течение продолжительного времени. Реакция аниона 27 с катионом [CpNi(SMe₂)₂]⁺ приводит к образованию 32-электронного парамагнитного трехпалубного комплекса 31 (схема 43), который так же, как и соединения 28а, b, устойчив только в инертной атмосфере.

Химические сдвиги протонов в спектрах ЯМР ¹Н для диамагнитных комплексов **28–30** находятся в типичных областях, тогда как сигналы протонов для комплекса **31** лежат в значительно более широком интервале, что связано с его парамагнитным характером и вызвано отклонением от стабильной 30-электронной конфигурации.

Структуры нейтральных трехпалубных комплексов СрСо(µ-C₃B₂Me₅)M(ring)

Дополнительное подтверждение строения соединений 28-31 было получено с помощью метода рентгеноструктурного анализа (рис. 23–28). Как и ожидалось, все эти комплексы имеют трехпалубную структуру, которая образована тремя циклическими лигандами, между которыми расположены два атома металла. Во всех случаях плоскости циклических лигандов практически параллельны (наблюдаемые двугранные углы Ср_{Со}/С₃В₂ и С₃В₂/(ring)_М лежат в интервалах 0.3 ÷ 3.3° и 0.1 ÷ 2.5°, соответственно); атомы расположены практически металлов над центроидами колец. Наименьшие двугранные углы C₃B₂/(ring)_M (~ 0.1°) наблюдаются для комплексов 28b и 29b, которые содержат Ср*-лиганды. Вероятно, стерическое отталкивание метильных групп Ср*- и С₃В₂-циклов в этих комплексах создает дополнительные препятствия возможному отклонению плоскостей от параллельности. В случае соединений 28а и 31 элементарная ячейка содержит две независимые молекулы. Для молекул А наблюдается взаимная ориентация циклов Cp_{C0}/C₃B₂ и C₃B₂/(ring)_M более близкая к заслоненной, тогда как для молекул В – более близкая к заторможенной. Для соединений 28b, 29a,b взаимная ориентация Срсо/С₃В₂ циклов заторможенная, тогда как в случае 30 она заслоненная. Ориентация $C_3B_2/(ring)_M$ циклов в **28а** близка к заторможенной, для **29а, b** она заслоненная. В целом, можно предположить, что ориентация циклических лигандов друг относительно друга регулируется тонким балансом электронных и стерических эффектов. Интересно отметить, что диборолильный лиганд всегда находится ближе к атому Со1 вне зависимости от природы второго металла в трехпалубном комплексе.

Расстояние Со1…С₃В₂ в случае 30-электронных комплексов 28–30 (1.583 ÷ 1.592 Å; табл. 8) близко к соответствующему расстоянию в ранее родственном трехпалубном CpCo(uописанном комплексе $C_{3}B_{2}Me_{2}Et_{2}H$)FeCp (1.580 Å),⁶² что указывает на близкий характер связывания в этих комплексах. В парамагнитном 32-электронном комплексе CoNi **31** это расстояние (1.640 Å), как и расстояние Cp \cdots Co заметно удлинено, что согласуется с наличием в молекуле двух неспаренных электронов и, как следствие, некоторым разрыхлением связей. Расстояние (η -C₄Me₄)Co···C₃B₂ в **30** (1.647 Å) значительно длиннее, чем расстояние СрСо…С₃В₂, что, вероятно, объясняется более сильным взаимодействием лиганда C₃B₂ с 14-электронным фрагментом CoCp по сравнению с 13-электронным фрагментом Со(С₄Ме₄).

Таблица 8. Расстояния от атомов металлов до плоскостей лигандов в комплексах **28–31** (Å).

	28 a	28b	29a	29b	30	31
М(лиганд)	FeCp	FeCp*	RuCp	RuCp*	$Co(C_4Me_4)$	NiCp
Со…Ср	1.649	1.647	1.655	1.654	1.655	1.698
$Co \cdots C_3 B_2$	1.592	1.588	1.583	1.590	1.585	1.640
$M \cdots C_3 B_2$	1.606	1.628	1.762	1.776	1.647	1.687
М…лиганд	1.654	1.647	1.795	1.788	1.691	1.740

Все связи М–В (M = Co, Fe, Ni, Ru) в комплексах **28–31** существенно длиннее, чем связи М–С_{C3B2}, что характерно для π -комплексов с борсодержащими гетероциклами и согласуется с бо́льшим ковалентным радиусом атома бора по сравнению с углеродом. Так, в комплексе **29b** величины длин связей Со–В (2.083 Å) и Ru–В (2.241 Å) заметно соответствующие величины для связей Со–С_{C3B2} (2.044–2.051, среднее

2.048 Å) и Ru– C_{C3B2} (2.211–2.216, среднее 2.214 Å). Плоскость C_3B_2 -цикла во всех комплексах слегка изогнута вдоль вектора В····В (в среднем 0.8°).

Как показывает попарное сравнение родственных структур **28а/28b** или **29а/29b** (см. табл. 8), введение пяти Ме-групп в Ср-лиганд приводит к повышению прочности его связывания с атомом М (M = Fe, Ru), и ослаблению связи М···C₃B₂ (M = Fe, Ru). Сходный эффект был отмечен ранее для металлоценов СрМСр* (M = Fe, Ru),⁹ а также наблюдался нами в случае трехпалубных комплексов с борольным лигандом (C₅R₅)Ru(η^{5} -C₄H₄BPh)Rh(C₄H₄BPh) (R = H, Me) (см. раздел 1.5). Наблюдаемое упрочнение взаимодействия М···Cp* и, как следствие, укорочение соответствующего расстояния объясняется донорным эффектом пяти метильных групп. При этом в соответствии с двухсторонней ориентацией орбиталей атома металла одновременно происходит ослабление связи со вторым π -лигандом.

Рис. 23. Структура комплекса СрСо(μ -С₃B₂Me₅)FeCp (28a) (тепловые эллипсоиды 50%-ной вероятности). Атомы водорода не приводятся. Избранные расстояния (Å): Co1–C1 2.034(9), Co1–C2 2.068(8), Co1–C3 2.048(8), Co1–C4 2.050(9), Co1–C5 2.042(10), Co1–C6 2.065(8), Co1–C7 2.057(8), Co1–C8 2.029(8), Co1–B1 2.095(9), Co1–B2 2.083(9), Fe1–C6 2.051(8), Fe1–C7 2.063(8), Fe1–C8 2.054(8), Fe1–C14 2.058(8), Fe1–C15 2.051(8), Fe1–C16 2.049(8), Fe1–C17 2.052(8), Fe1–C18 2.044(8), Fe1–B1 2.115(9), Fe1–B2 2.100(9), \angle (C₃B₂/Cp(Co)) 2.8(6)°, \angle (C₃B₂/Cp(Fe)) 1.9(6)°

Рис. 24. Структура комплекса СрСо(μ -С₃B₂Me₅)FeCp* (28b) (тепловые эллипсоиды 50%-ной вероятности). Атомы водорода не приводятся. Избранные расстояния (Å): Co1–C1 2.046(7), Co1–C2 2.061(6), Co1–C3 2.043(7), Co1–C4 2.076(6), Co1–C5 2.066(7), Co1–C6 2.041(3), Co1–C7 2.051(4), Co1–C8 2.061(4), Co1–B1 2.080(4), Co1–B2 2.073(4), Fe1–C6 2.091(3), Fe1–C7 2.081(4), Fe1–C8 2.083(4), Fe1–C14 2.049(3), Fe1–C15 2.052(4), Fe1–C16 2.040(4), Fe1–C17 2.041(3), Fe1–C18 2.042(4), Fe1–B1 2.115(4), Fe1–B2 2.093(4), \angle (C₃B₂/Cp(Co)) 3.3(7)°, \angle (C₃B₂/Cp(Fe)) 0.1(7)°

Рис. 25. Структура комплекса СрСо(μ -С₃B₂Me₅)RuСр (29а) (тепловые эллипсоиды 50%-ной вероятности). Атомы водорода не приводятся. Избранные расстояния (Å): Co1–C1 2.057(4), Co1–C2 2.048(3), Co1–C3 2.037(3), Co1–C4 2.044(4), Co1–C5 2.059(3), Co1–B1 2.084(3), Ru1–C4 2.183(4), Ru1–C5 2.207(3), Ru1–C9 2.157(4), Ru1–C10 2.166(3), Ru1–C11 2.171(3), \angle (C₃B₂/Cp(Co)) 0.7(6)°, \angle (C₃B₂/Cp(Ru)) 2.4(6)°

Рис. 26. Структура комплекса СрСо(μ -С₃B₂Me₅)RuСр* (29b) (тепловые эллипсоиды 50%-ной вероятности). Атомы водорода не приводятся. Избранные расстояния (Å): Co1–C1 2.043(6), Co1–C2 2.051(4), Co1–C6 2.022(6), Co1–C7 2.035(5), Co1–C8 2.015(8), Co1–B1 2.083(5), Ru1–C1 2.216(6), Ru1–C2 2.211(4), Ru1–C9 2.161(5), Ru1–C10 2.163(4), Ru1–C11 2.171(4), Ru1–B1 2.241(5) \angle (C₃B₂/Cp(Co)) 0.5(5)°, \angle (C₃B₂/Cp(Ru)) 0.1(5)°

Рис. 27. Структура комплекса СрСо(μ -С₃В₂Ме₅)СоС₄Ме₄ (**30**) (тепловые эллипсоиды 30%-ной вероятности). Атомы водорода не приводятся. Избранные расстояния (Å): Co1–C1 2.028(5), Co1–C4 2.054(4), Co1–C6 2.037(6), Co1–C7 2.047(5), Co1–C8 2.046(4), Co2–C1 2.096(5), Co2–C4 2.095(3), Co2–C9 1.988(4), Co2–C10 1.978(3), Co2–C11 1.978(4), Co2–B1 2.125(4), Co1–B1 2.079(4) \angle (C₃B₂/Cp(Co)) 0.3(5)°, \angle (C₃B₂/C₄Me₄(Co)) 2.2(6)°

Рис. 28. Структура комплекса СрСо(μ -С₃В₂Ме₅)NiCp (**31**) (тепловые эллипсоиды 50%-ной вероятности). Атомы водорода не приводятся. Избранные расстояния (Å): Co1–C6 2.096(4), Co1–C7 2.108(4), Co1–C8 2.083(4), Co1–C14 2.094(5), Co1–C15 2.093(5), Co1–C16 2.083(5), Co1–C17 2.087(5), Co1–C18 2.091(4), Co1–B1 2.141(5), Co1–B2 2.120(5), Ni1–C1 2.111(5), Ni1–C2 2.117(5), Ni1–C3 2.114(5), Ni1–C4 2.108(4), Ni1–C5 2.110(4), Ni1–C6 2.115(4), Ni1–C7 2.124(4), Ni1–C8 2.113(4), Ni1–B1 2.159(5), Ni1–B2 2.144(5), \angle (C₃B₂/Cp(Co)) 3.2(6)°, \angle (C₃B₂/Cp(Ni)) 2.5(6)°

Электрохимическое поведение нейтральных трехпалубных комплексов CpCo(μ -C₃B₂Me₅)M(ring)

Электрохимическое поведение комплексов **28–30** было изучено с помощью метода циклической вольтамперометрии. Значения формальных электродных потенциалов для окислительно-восстановительных процессов комплексов **28а,b** приведены в табл. 9.

Таблица 9. Формальные электродные потенциалы (В, относительно НКЭ), а также разница между анодным и катодным пиками (ΔE_p , мВ) для окислительно-восстановительных процессов комплексов **28а,b** в CH₂Cl₂ и MeCN.^[a]

Комплекс	Ростроритони	Окисл	іение	Восстановление
(M(ring))	Гастворитель	$E^{\circ}_{+/2+}(\Delta E_{\mathrm{p}})$	$E^{\circ}'_{0/+}(\Delta E_{\mathrm{p}})$	$E^{\circ}{}'_{0/-}(\Delta E_{ m p})$
28a (FeCp)	CH_2Cl_2	_	0.00 (60)	-1.86 (95)
	MeCN	_	-0.03 (74)	-1.76 (81)
28b	CH_2Cl_2	+1.68 (-)	-0.19 (73)	-1.94 (82)
(FeCp*)	MeCN	+1.69 (-)	-0.30 (60)	-1.92 (59)

^[а] Измерено при скорости сканирования 0.1 В с⁻¹.

Как видно из рис. 29, в растворе MeCN комплекс **28b** претерпевает обратимое одноэлектронное окисление, которое имеет признаки

химической и электрохимической обратимости ($\Delta E_p = 73$ мВ; скорость сканирования 0.2 В с⁻¹) и соответствует окислительному процессу, центрированному на атоме железа.⁴⁵ Второй окислительный и первый восстановительный процесс протекают, в основном, на атоме кобальта.

Рис 29. Циклическая вольтамперограмма, для комплекса 28b в MeCN (0.80 $\times 10^{-3}$ моль дм⁻³). Золотой электрод; поддерживающий электролит [NEt₄]PF₆ (0.1 моль дм⁻³). Скорость сканирования 0.2 В с⁻¹.

Рис. 30 иллюстрирует электрохимическое поведение комплексов **29a** и **30**, которые способны претерпевать обратимое одноэлектронное окисление с образованием 29-электронных катионов. В обоих случаях 2-й окислительный процесс необратим и осложняется абсорбцией на поверхности электрода. Помимо этого наблюдается частично обратимое одноэлектронное восстановление при потенциале, близком к разряду растворителя.

Рис 30. Циклические вольтамперограммы в CH_2Cl_2 : (a) 0.9×10^{-3} моль дм⁻³ раствор 29а; (b) 1.0×10^{-3} моль дм⁻³ раствор 30. Платиновый электрод; поддерживающий электролит [NBu₄]PF₆ (0.2 моль дм⁻³); скорость сканирования 0.2 В с⁻¹.

Сравнение циклических вольтамперограмм для комплексов **29a** и **30**, зарегистрированных при скоростях сканирования в интервале $0.02 \div 2.0$ В с⁻¹, ясно указывает на то, что 1-й окислительный процесс является одноэлектронным процессом: 1) соотношение катодного и анодного токов i_{pc}/i_{pa} неизменно равно 1; 2) величина $i_{pa} \cdot v^{-1/2}$ также является постоянной величиной; 3) разница между пиками лежит в интервале 62 ÷ 120 мВ.⁴⁵

Окисление **29а** протекает с образованием устойчивого монокатиона **29а**⁺, что можно увидеть по одинаковым профилям циклических вольтамперограмм исходного комплекса и соответствующего монокатиона в результате исчерпывающего окисления ($E_w = +0.6$ В). В процессе окисления цвет раствора меняется с синего на зеленый. Наблюдаемые в ходе окисления спектрофотометрические изменения в УФ/видимом регионе, зарегистрированные с помощью оптически прозрачной тонкослойной электродной ячейки (OTTLE), приведены на рис. 31. Окисление **29а** сопровождается снижением поглощения в синем диапозоне (при $\lambda_{max} = 573$ нм) и ростом поглощения в ближнем ИК-диапозоне ($\lambda_{max} = 889$ нм), отвечающем переносу заряда. Сходную картину наблюдали при окислении комплексов **29b**, **30**.

Рис. 31. Наблюдаемые с помощью ячейки ОТТLE спектрофотометрические изменения, зарегистрированные при окислении **29а** в растворе хлористого метилена ($E_w = +0.4$ В). Поддерживающий электролит [NBu₄]PF₆ (0.2 моль дм⁻³).

Значения формальных электродных потенциалов для окислительновосстановительных процессов, наблюдаемых для комплексов **29**, **30**, даны в табл. 10. Для сравнения также представлены потенциалы окисления моноядерных сэндвичевых комплексов Cp*M(ring). Как видно, замена Cp*-лиганда на CpCo(1,3-C₃B₂Me₅) приводит к повышению оксидативной устойчивости исходных нейтральных соединений. Кроме того, образующиеся монокатионы в случае трехпалубных комплексов также гораздо более стабильны. Вероятно это связано с возможностью большей делокализации в случае трехпалубных комплексов **29**, **30**.
Таблица 10. Формальные электродные потенциалы (В, относительно НКЭ), а также разница между анодным и катодным пиками (ΔE_p , мВ) для окислительно-восстановительных процессов **29а,b 30** и их моноядерных сэндвичевых аналогов в CH₂Cl₂.^[a]

Комплекс (M(ring))	Оки	ісление	Восстановление	
	$E^{\circ\prime}{}_{\scriptscriptstyle +\!/2^+}$	$E^{\circ}'_{0/+}(\Delta E_{\rm p})$	$E^{\circ}{}'_{0/-}$ ($\Delta \mathrm{E_p}$)	
29a (RuCp)	+1.59	+0.43 (85)	$-1.84^{[b]}(84)$	
29b (RuCp*)	$+1.53^{[b]}$	+0.25 (89)	-1.99 ^[b] (-)	
30 (Co(C ₄ Me ₄))	+1.45	+0.09 (96)	-2.13 ^[b] (-)	
Cp*RuCp	_	$+0.62^{83}$	_	
Cp*RuCp*	_	$+0.55^{84,85}$	_	
Cp*Co(C ₄ Me ₄)	_	$+0.26^{48}$	_	

^[а] Измерено при скорости сканирования 0.1 В с⁻¹. ^[b] Квадратно-волновая вольтамперометрия; измерено при скорости сканирования 0.1 В с⁻¹.

Данные поглощения в У Φ /видимой области, а также цвет раствора для комплексов **29**, **30** в растворе CH₂Cl₂ до и после процесса 1-го одноэлектронного окисления приведены в табл. 11.

Таблица 11. Данные поглощения в УФ/видимой области для комплексов **29**, **30** и их монокатионов в растворе CH₂Cl₂.

Комплекс	M(ring)	Цвет (λ_{max} , нм)
29a	RuCp	синий (308, 421, 574)
29a ⁺	1op	зеленый (308, 420, 548,889)
29b	RuCp*	изумрудно-зеленый (270, 328, 420, 580)
29b ⁺	F	желто-зеленый (270, 328, 413, 511, 881)
30	Co(C ₄ Me ₄)	зеленый (289, 382, 438, 603)
30 ⁺		зеленый (289, 378, 438, 564, 888)

109

Электронные спектры поглощения в УФ/видимой области, измеренные в ячейке ОТТLE в различных растворителях, свидетельствуют о наличии взаимодействия между атомами металла. В качестве примера ниже приведены спектры комплекса **29b** в CH₂Cl₂, MeCN и ТГФ (рис. 32).

Рис. 32. Спектры в УФ/видимой области в ячейке ОТТLE, зарегистрированные для комплекса **29b** в различных растворителях: (а) CH₂Cl₂, (b) MeCN, (c) ТГФ. Поддерживающий электролит [NBu₄]PF₆ (0.2 моль дм⁻³).

Так видимой области как положение полос поглощения В практически не меняется при переходе от незамещенного комплекса 29а к метилированному аналогу 29b и не зависит от растворителя, они были отнесены к d-d переходам. Различие в длинах волн полос поглощения в УФ-регионе для комплексов 29а и 29b позволяет отнести эти полосы к переносу заряда с лиганда на металл. Следует отметить, ЧТО одноэлектронное окисление комплекса 29а в СH₂Cl₂ приводит К появлению полосы поглощения в ближней ИК-области при $\lambda_{max} = 889$ нм, не зависящей от используемого растворителя (CH₂Cl₂, MeCN, TГФ), что исключает возможность ее отнесения к межвалентным переходам и позволяет описывать катион **29a**⁺ как полностью делокализованную смешанно-валентную частицу.

Также одноэлектронное окисление комплексов **29а,b 30** было изучено с использованием ИК-спектроэлектрохимии. Рис. **33** иллюстрирует изменения, наблюдаемые при окислении комплекса **29а** в **29а**⁺. Как видно, происходит сдвиг полосы поглощения при 1305 см⁻¹, соответствующей колебаниям ν (B–Me),⁸⁶ до 1322 см⁻¹ (также проиходит рост промежуточной полосы при 1317 см⁻¹, которая присутствует и в исходном комплексе). Предполагается, что происходящее при уменьшении числа валентных электронов ослабление связи металл-лиганд, приводит к сдвигу полос колебаний в область, отвечающую более высоким энергиям.

Рис. 33. Наблюдаемые в ИК-регионе спектральные изменения, зарегистрированные с помощью ячейки ОТТLE при окислении комплекса

29а в растворе CH_2Cl_2 ($E_w = +0.4$ В). Поддерживающий электролит [NBu₄]PF₆ (0.2 моль дм⁻³).

Природа связи $CpCo(\mu-C_3B_2Me_5)-M$ в трехпалубных комплексах $CpCo(\mu-C_3B_2Me_5)M(ring)$

Анионы [CpCo(1,3-C₃B₂R₅)]⁻ (R = Me **27**; H **27'**) выступают в трехпалубных комплексах CpCo(μ -C₃B₂R₅)M(ring) как 6-электронные π -лиганды по отношению к катионам [M(ring)]⁺ подобно циклопентадиениланионам C₅R₅⁻ в сэндвичевых соединениях (C₅R₅)M(ring). Для того чтобы сравнить связывающие свойства этих лигандов нами были проведены расчеты методом DFT. Энергетические параметры взаимодействия для комплексов (L)M(ring) (L = **27**, **27'**, C₅R₅⁻; M(ring) = RuCp, CoC₄H₄) были получены с помощью анализа разложения энергии (EDA; см. раздел 1.6).

Данные EDA для комплексов (L)М(ring) в терминах взаимодействия между фрагментами L⁻ и [M(ring)]⁺ приведены в табл. 12. Для неметилированных (родоначальных) анионов **27'** и Cp⁻ электростатическое притяжение (ΔE_{elstat}) практически одинаковое. Однако притягивающее орбитальное взаимодействие (ΔE_{orb}) для **27'** ниже (на 5–8 ккал моль⁻¹), а отталкивание Паули выше (на 13–15 ккал моль⁻¹), чем для Cp⁻. В результате полная энергия связывания (ΔE_{int}) для родоначального аниона **27'** приблизительно на 19–21 ккал моль⁻¹ ниже, чем для Cp⁻. Притягивающие взаимодействия в обоих случаях имеют приблизительно на 40% ковалентный характер и на 60% ионный.

Сравнение метилированных анионов 27 и Ср^{*-} выявило сходную тенденцию. Увеличение ΔE_{int} при метилировании гораздо меньше для сэндвичевого аниона (3–4.5 ккал моль⁻¹), чем для циклопентадиениланиона (7–10 ккал моль⁻¹). Интересно, что энергии диссоциации для 27' и

27 практически одинаковы благодаря параллельному увеличению ΔE_{prep} на 3.4–4.4 ккал моль⁻¹.

Таблица 12. Результаты EDA (в ккал моль⁻¹) для комплексов (L)M(ring) при использовании [M(ring)]⁺ и L⁻ в качестве взаимодействующих фрагментов.^[а]

Комплекс	L	$\Delta E_{\rm int}$	ΔE_{Pauli}	$\Delta E_{elstat}^{[b]}$	$\Delta E_{\rm orb}^{[b]}$
	271	-209.1	170.6	-230.2	-149.5
(L)Co(C ₄ H ₄)	21			(60.6%)	(39.4%)
	Cn	-228.5	157.6	-231.9	-154.2
	Ср			(60.1%)	(39.9%)
	27	-212.5	187.3	-238.7	-161.1
	21			(59.7%)	(40.3%)
	C **	-235.9	173.7	-235.4	-174.2
	Cp			(57.5%)	(42.5%)
	271	-207.4	237.5	-266.2	-178.6
	21			(59.9%)	(40.1%)
	Cn	-228.5	222.4	-264.1	-186.9
(L)RuCp	Ср			(58.6%)	(41.4%)
(L)Ruop	27	-211.9	254.2	-275.7	-190.4
	21			(59.1%)	(40.9%)
	Cn*	-238.2	233.4	-265.8	-205.8
	Cp.			(56.4%)	(43.6%)

^[а] На уровне ВР86/ТZ2Р. ^[b] Значения в скобках показывают процентный вклад в общие притягивающие взаимодействия.

Ковалентное связывание в комплексах (L)M(ring) обычно описывают в терминах π и σ донирования L⁻ \rightarrow [M(ring)]⁺, а также обратного δ донирования [M(ring)]⁺ \rightarrow L⁻. Чтобы вычислить вклады π , σ и δ взаимодействий мы проанализировали заселенность орбиталей фрагментов (fragment orbital; FO) в комплексах, определенную с помощью анализа заселенности по Малликену. Данные для родоначальных комплексов (L)M(ring) (L = Cp⁻, **27'**), определенные из вкладов в заполненные орбитали как FO [M(ring)]⁺, так и FO L⁻, даны в табл. 13.

Таблица 13. Процентный вклад π, σ и δ взаимодействий в комплексах (L)M(ring).^[a]

		Br	хлад (9	Примечание	
[M(ring)] ⁺	L	L			
		π	σ	δ	
	27′	49.0	38.4	12.6	[b]
$[Co(C_4H_4)]^+$		46.2	43.2	10.6	[c]
	Cp ⁻	61.9	20.0	18.2	[b]
	-	60.4	23.6	16.0	[c]
	27'	50.8	33.5	15.7	[b]
		47.8	38.4	13.8	[c]
[RuCp] ⁺		62.3	17.5	20.2	[b]
	Cp⁻	60.1	20.5	19.4	[c]
		66.2	13.8	20.0	[d]

^[a] На уровне BP86/def2-TZVPP//BP86/TZ2P. ^[b] На основе вкладов FO [M(L)]⁺ в заполненные MO. ^[c] На основе вкладов FO [ring]⁻ в заполненные MO. ^[d] В соответствии с EDA; на уровне BP86/TZ2P.

Как видно из табл. 13, суммарный вклад π - и σ -донирования для 27' выше, чем для Ср⁻, что предполагает более сильную донорную способность сэндвичевого аниона. В соответствии с этим выводом заряды NBO (natural bond orbital charges)^{xv} на атомах металла частицы M(ring) несколько меньше в случае комплексов с анионами 27/27' по сравнению с C₅R₅⁻ (табл. 14). Следует отметить, что в обеих сериях (ring)M(27/27') и (ring)M(C₅R₅) метилирование приводит к небольшому понижению заряда NBO в соответствии с донорным эффектом метильных групп, однако при этом заряд на атоме Со в группах 27, 27' остается практически неизменным. В дикобальтовых трехпалубных комплексах (C₄H₄)Co(27/27') заряд на атоме Со в частице Co(C₄H₄) ниже, чем в CoCp, предполагая, что окисление и восстановление центрированы на атомах кобальта Co(C₄H₄) и CoCp, соответственно.

^{xv} Заряды NBO используются в компьютерной химии для оценки и расчета распределения электронной плотности в атомах и в связях между атомами.

Таблица 14. Заряды NBO (*q*, в атомных единицах) ^[a] и электростатические потенциалы на ядрах (*E*, в атомных единицах) ^[b] для комплексов (L)M(ring).

Комплекс	L	<i>q</i> (M) ^[c]	E(M)	$E(C_{ring})$ av	
	271	0.40	124 170	14700	
	27	0.47	124.179	14./89	
$(L)Co(C_4H_4)$	Ср	0.41	124.173	14.788	
	27	0.38	124.186	14.796	
		0.46			
	Cp*	0.40	124.186	14.800	
	271	0.05	250 754	14 780	
	21	0.46	230.734	14.709	
(L)RuCn	Ср	0.07	250.754	14.790	
(L)Ruep	27	0.01	250.760	14702	
	21	0.46	230.760	14./93	
	Cp*	0.06	250.767	14.800	

^[a] На уровне BP86/def2-TZVPP//BP86/TZ2P. ^[b] На уровне BP86/TZ2P. ^[c] Значения, данные курсивом, относятся к атому Со в **27/27'**.

Однако следует отметить, что присутствие электроположительных атомов бора понижает заряды NBO металлов, снижая их важность как индикатора электронодонорных свойств лиганда. Недавно было показано, что электростатические потенциалы на атомах углерода являются полезным критерием оценки электронных эффектов заместителей в бензольном кольце.⁸⁷ Этот параметр также полезен в металлоорганической химии. Действительно, как видно из табл. 14, введение пяти метильных групп в Ср-кольцо сэндвичевых соединений СрМ(ring) значительно увеличивает 116

электростатический потенциал на ядрах металла и углерода (E(M) и $E(C_{ring})$, соответственно) частицы M(ring). Такая же картина наблюдается и для комплексов с сэндвичевыми анионами 27/27'. В серии (L)Co(C₄H₄) величины E(Co) и $E(C_{C4H4})$ выше в случае 27' по сравнению с Cp, подтверждая сильную донорную способность сэндвичевого аниона. В то же время в серии (L)RuCp E(Ru) и $E(C_{Cp})$ практически совпадают для 27' и Cp, что указывает на очень близкие донорные свойства этих анионов по отношению к фрагменту [RuCp]⁺. В целом, полученные данные показывают, что донорная способность увеличивается в следующем порядке: Cp⁻ \leq 27' < 27 \leq Cp^{*-}.

2.2.2 Нейтральные трехпалубные комплексы CpCo(µ-C₃B₂Me₅)ML₂

При взаимодействии аниона 27 (взятого в виде его таллиевого производного 27Tl) с хлоридами $[M(cod)Cl]_2$ (M = Rh, Ir; cod = 1,5циклооктадиен) и $[Rh(C_2H_4)_2Cl]_2$ нами с хорошими выходами были синтезированы нейтральные трехпалубные комплексы $CpCo(C_3B_2Me_5)ML_2$ (32 M = Rh, L₂ = cod; 33 M = Ir, L₂ = cod; 34 M = Rh, L₂ = (C₂H₄)₂; схема 44).

Схема 44

Полученные соединения представляют собой твердые вещества, устойчивые при хранении на воздухе в течение продолжительного

Они хорошо растворяются в большинстве органических времени. растворителей, как неполярных, так и полярных. Комплексы 32–34 были охарактеризованы элементным анализом и данными ЯМР-спектроскопии. Интересно отметить, что в спектре ЯМР ¹Н комплекса **34** (CDCl₃, 20°C) сигналы протонов этиленовых лигандов наблюдаются в виде уширенного синглета, что указывает на их быстрое вращение вокруг оси Rh-алкен. Ранее подобное быстрое вращение наблюдалось в случае $[Rh(C_2H_4)_2Cl]_2$, тогда как в случае комплекса CpRh(C₂H₄)₂ этот процесс медленный и сигналы, относящиеся К этилену, наблюдались В виде двух мультиплетов. 88,89

Структуры нейтральных трехпалубных комплексов CpCo(µ-C₃B₂Me₅)ML₂

Дополнительное подтверждение строения комплексов **32–34** было получено с помощью метода РСА (рис. 34–36). В этих соединениях плоскости циклопентадиенильного и диборолильного колец практически параллельны, а атомы металлов располагаются приблизительно над центроидами циклов. Ср- и $C_3B_2Me_5$ -лиганды в комплексах **32,33** находятся в заторможенной конформации по отношению друг к другу. В случае комплекса **34** наблюдается заслоненная взаимная ориентация пятичленных колец. Метильные группы при C_3B_2 -цикле слегка отклонены от плоскости цикла в сторону атома Со на $0.01(1) \div 0.21(1)$ Å.

Циклооктадиеновый лиганд в **32**,**33** связан с атомами металлов по η^4 типу и имеет конформацию немного искаженной ванны. Средняя длина координированной двойной связи C=C_{cod} в комплексах **32** и **33** (1.414(4) и 1.430(6) Å, соответственно) превышает наблюдаемую в свободном циклооктадиене (1.341 Å).⁹⁰ Сходные наблюдения ранее были сделаны для структур производных (C₅R₅)M(cod) (M = Rh, Ir).^{91,92} В структурах комплексов **32** и **33** довольно сильно выражено трансвлияние лигандов. Так, двойные связи C14=C15 и C18=C19 находятся в транс-положении к связям C6–B1 и C7–C8 диборолильного лиганда. При этом связи M–C14 и M–C19 (M = Rh и Ir) короче связей M–C15 и M–C18 на 0.010(3) Å. Более короткие связи M–C14 и M–C19 находятся в трансположении к удлиненным связям M–C7 и M–B1. И наоборот, более длинные связи M–C15 и M–C18 находятся в транс-положении к укороченным М–C6 и M–C8. В результате этого связь M–B1 удлинена по сравнению с M–B2 на 0.066(3) (M = Rh) и 0.090(4) Å (M = Ir). Аналогичным образом, связи M–C6 и M–C8 по сравнению со связью М–C7 укорочены на 0.139(3) и 0.147(4) Å, соответственно. Помимо этого, происходит заметный изгиб C₃B₂-цикла вдоль линии В····В (угол перегиба составляет порядка 4°).

Также транс-влияние наблюдается в случае связей Со–С и Со–В, хотя в этом случае вариации в длинах связей проявляются меньше. Так, наблюдается укорочение связи Со–В1 по сравнению с Со–В2 на 0.031(3) и 0.030(4) Å и укорочение связи Со–С7 по сравнению с Со–С6 и Со–С8 на 0.032(3) и 0.023(4) Å, соответственно.

Средняя длина связи C=C координированного этилена в **34** составляет 1.391(11) Å, что близко к величинам, наблюдаемым в циклопентадиенильных аналогах (C₅R₅)Rh(C₂H₄)₂ (1.36 ÷ 1.43 Å),^{93,94,95,96} и существенно больше, чем в свободном этилене (1.333 Å).⁹⁷ Расстояния Rh– C_{C2H4} (2.12 Å) также близки к величинам, установленным для (C₅R₅)Rh(C₂H₄)₂ (2.11–2.13 Å).

Рис. 34. Структура комплекса CpCo(μ -C₃B₂Me₅)Rh(cod) (32) (тепловые эллипсоиды 50%-ной вероятности). Атомы водорода не приводятся. Избранные расстояния (Å): Co1–C1 2.041(3), Co1–C2 2.041(3), Co1–C3 2.048(3), Co1–C4 2.036(3), Co1–C5 2.037(3), Co1–C6 2.066(3), Co1–C7 2.034(3), Co1–C8 2.061(3), Co1–B1 2.108(3), Co1–B2 2.077(3), Rh1–C6 2.215(3), Rh1–C7 2.354(3), Rh1–C8 2.226(2), Rh1–C14 2.109(3), Rh1–C15 2.111(3), Rh1–C18 2.128(3), Rh1–C19 2.119(3), Rh1–B1 2.338(3), Rh1–B2 2.272(3), \angle (C₃B₂/Cp(Co)) 1.6(6)°.

Рис. 35. Структура комплекса СрСо(μ -С₃В₂Ме₅)Іг(соd) (33) (тепловые эллипсоиды 50%-ной вероятности). Атомы водорода не приводятся. Избранные расстояния (Å): Co1–C1 2.032(5), Co1–C2 2.050(5), Co1–C3 2.036(5), Co1–C4 2.027(5), Co1–C5 2.029(5), Co1–C6 2.059(4), Co1–C7 2.036(4), Co1–C8 2.049(3), Co1–B1 2.101(4), Co1–B2 2.071(4), Ir1–C6 2.192(4), Ir1–C7 2.339(4), Ir1–C8 2.225(3), Ir1–C14 2.105(4), Ir1–C15 2.115(4), Ir1–C18 2.125(4), Ir1–C19 2.115(4), Ir1–B1 2.338(4), Ir1–B2 2.248(4), \angle (C₃B₂/Cp(Co)) 2.0(6)°.

Рис. 36. Структура комплекса СрСо(μ -С₃В₂Ме₅)Rh(С₂H₄)₂ (34) (тепловые эллипсоиды 50%-ной вероятности). Атомы водорода не приводятся. Избранные расстояния (Å): Co1–C1 2.064(8), Co1–C2 2.046(9), Co1–C3 2.052(8), Co1–C4 2.063(9), Co1–C5 2.036(8), Co1–C6 2.056(9), Co1–C7 2.076(9), Co1–C8 2.062(9), Co1–B1 2.044(9), Co1–B2 2.077(9), Rh1–C6 2.291(9), Rh1–C7 2.275(9), Rh1–C8 2.296(9), Rh1–C14 2.136(8), Rh1–C15 2.124(8), Rh1–C16 2.115(9), Rh1–C17 2.129(8), Rh1–B1 2.222(9), Rh1–B2 2.281(9), \angle (C₃B₂/Cp(Co)) 1.5(4)°.

Электрохимическое поведение трехпалубных комплексов СрСо(µ-C₃B₂Me₅)M(cod)

Электрохимическое поведение трехпалубных комплексов **32** и **33**, содержащих терминальный циклооктадиеновый лиганд, также было изучено с помощью метода ЦВА. Значения формальных электродных потенциалов для окислительно-восстановительных процессов приведены в табл. 15.

Для них наблюдается два одноэлектронных процесса окисления и один одноэлектронный процесс восстановления.

Таблица 15. Формальные электродные потенциалы (В, относительно НКЭ), а также разница между анодным и катодным пиками (ΔE_p , мВ) для окислительно-восстановительных процессов комплексов **32** и **33** в CH₂Cl₂ и MeCN.^[a]

Комплекс	Растворитель	Окисл	Восстановление	
(M)	1 de l'hophienb	$E^{\circ}{}_{0/+}^{\circ}(\Delta E_{\mathrm{p}})$	$E^{\circ}_{+/2+}(\Delta E_{\mathrm{p}})$	$E^{\circ}'_{0/-}(\Delta E_{ m p})$
32 (Rh)	CH ₂ Cl ₂	+0.28 (120)	+0.88 (102)	-1.84 (140) ^[b]
02 (RH)	MeCN	$+0.05 (446)^{[c,d]}$	+2.05 ^[e] (-)	-1.69 (84)
33 (Ir)	CH ₂ Cl ₂	+0.37 (95)	+0.86 ^[b,d] (-)	-1.76 (99)
33 (II)	MeCN	+0.23 (79)	$-(-)^{[f]}$	-1.62 (60)

^[a] Измерено при скорости сканирования 0.1 В с⁻¹. ^[b] Расщеплен вследствие химических процессов. ^[c] Двухэлектронный процесс. ^[d] Квазиобратимый процесс. ^[e] Квадратно-волновая вольтамперометрия; измерено при скорости сканирования 0.1 В с⁻¹. ^[f] Маскируется разрядом растворителя.

Основываясь на низких величинах потенциалов окисления два процесса одноэлектронного окисления, наблюдаемых для Rh-комплекса **32** в CH₂Cl₂ (рис. 37), можно отнести к последовательному окислению атома родия Rh^I \rightarrow Rh^{II} \rightarrow Rh^{III}. Каждый из процессов обратим в масштабе времени циклической вольтамперометрии. Монокатион, генерируемый в процессе исчерпывающего 1-го окисления, довольно устойчив в реальном масштабе времени. Генерируемый на стадии 2-го окисления дикатион заметно менее устойчив.

Рис. 37. Циклические вольтамперограммы для комплекса 32: (а) раствор в CH_2Cl_2 (1.8 × 10⁻³ моль дм⁻³); золотой электрод; поддерживающий электролит [NBu₄]PF₆ (0.2 моль дм⁻³); (b, c) раствор в MeCN (1.0 × 10⁻³ моль дм⁻³); стеклоуглеродный электрод; поддерживающий электролит [NEt₄]PF₆ (0.1 моль дм⁻³). Скорость сканирования 0.2 В с⁻¹.

Интересно, что окисление комплекса **32** в MeCN протекает как квазиобратимый двухэлектронный процесс, на что указывает довольно большая разница между пиками (рис. 37 (с)). Проведение исчерпывающего двуэлектронного окисления (при $E_w = +0.9$ B), а также обратного исчерпывающего восстановления (при $E_w = -0.5$ V) не приводит к изменению профилей вольтамперограмм. Из этого следует, что окисление Rh^I \rightarrow Rh^{III} в ацетонитриле вызывает существенные структурные изменения, но трехпалубная структура при этом сохраняется.

На рис. 38 представлены ЦВА-профили для комплекса **33** в различных растворителях. Как и в случае соединения **32**, в CH_2Cl_2 наблюдается последовательность одноэлектронных окислений $Ir^I \rightarrow Ir^{II} \rightarrow$

Ir^{III}, однако 2-й процесс Ir^{II} \rightarrow Ir^{III} необратим, что указывает на малую устойчивость образующегося Ir^{III}-дикатиона.

Рис. 38. Циклические вольтамперограммы для комплекса **33**: (а) раствор в CH_2Cl_2 (1.1 × 10⁻³ моль дм⁻³); золотой электрод; поддерживающий электролит [NBu₄]PF₆ (0.2 моль дм⁻³); (b) раствор в MeCN (1.3 × 10⁻³ моль дм⁻³); стеклоуглеродный электрод; поддерживающий электролит [NEt₄]PF₆ (0.1 моль дм⁻³). Скорость сканирования 0.2 В с⁻¹.

Также как и родиевый комплекс 32, иридиевый комплекс 33 в ацетонитриле подвергается двухэлектронному окислению, которое электрохимически обратимо (отношение химически и токов $i_{\rm pc}/i_{\rm pa}$ постоянно равно 1, разница между пиками составляет 52 мВ при скорости c^{-1}). 0.02 В ЧТО свидетельствует о сканирования стабильности соответствующего дикатиона.

В табл. 16 приведены данные поглощения в УФ/видимой области для комплексов **32**, **33**, а также продуктов их окисления.

Таблица 16. Данные поглощения в УФ/видимой области для комплексов **32**, **33**, а также продуктов их окисления.

		исходный цвет	цвет после окисления		
	растворитель	(λ _{max} , нм)	(λ _{max} , нм)		
		красный	зеленый		
32	CH_2Cl_2	(336, 458)	(336, 472, 623) ^[a]		
54		желто-оранжевый	зеленый		
	MeCN	(342, 456)	(316, 456, 574) ^{[b],[c]}		
		оранжево-коричневый	[1]		
33	CH_2Cl_2	(335, 473)	[0]		
55		оранжевый	красный		
	MeCN	(333, 468)	(295, 333, 468) ^{[b],[c]}		
Перя	 зый олноэлект	ронный процесс. ^[b]	Ограниченно стабилен		

^[a] Первый одноэлектронный процесс. ^[b] Ограниченно стабилен. ^[c] Двухэлектронный процесс. ^[d] Нестабилен.

Природа связи Rh–(C_2H_4) в комплексе $CpCo(\mu$ - $C_3B_2Me_5)Rh(C_2H_4)_2$

Первый комплекс родия с этиленом, комплекс Крамера $[Rh(C_2H_4)_2Cl]_2$, был синтезирован в 1962 г.⁹⁸ Оказалось, что он является очень полезным синтоном в химии родия. Так, замещение лабального этилена в комплексе Крамера приводит к различным комплексам, содержащим алкеновые, диеновые, фосфиновые, карбонильные и другие лиганды,^{99,100} тогда как замена атома Cl позволяет вводить разнообразные анионные лиганды (например, ацетиацетонат, Cp и др.). В частности, циклопентадиенильный комплекс CpRh(C₂H₄)₂ был получен при реакции [Rh(C₂H₄)₂Cl]₂ с CpNa в TГФ.¹⁰¹ Было показано, что этиленовый лиганд в

СрRh(C₂H₄)₂ гораздо менее лабилен, чем в [Rh(C₂H₄)₂Cl]₂ и его можно заместить лишь при повышенных температурах (> 110 °C); термохимические измерения показали, что прочность связи Rh–(этилен) составляет около 31 ккал моль⁻¹.¹⁰² К настоящему моменту синтезировано большое количество Ср-замещенных производных CpRh(C₂H₄)₂, в том числе Cp*Rh(C₂H₄)₂,^{103,104} однако энергетические параметры для связи Rh–(этилен) в этих комплексах не были описаны.

Для сравнения связывания Rh–C₂H₄ в родственных комплексах (L)Rh(C₂H₄)₂ (L = CpCo(C₃B₂R₅), C₅R₅; R = H, Me) нами были рассчитаны энергии диссоциации этилена (на уровне BPBE; табл. 17). Как было упомянуто выше, ранее Крамер сообщил о величине 31 ккал моль⁻¹ для прочности связи Rh–(C₂H₄) (получена на основе газофазного пиролиза).⁸⁸ Согласно нашим рассчетным данным, энтальпия диссоциации этилена в CpRh(C₂H₄)₂ составляет 32.4 ккал моль⁻¹, что подтверждает достоверность результатов расчетов.

Как видно из табл. 17, все энергетические параметры (внутренняя энергия, энтальпия и свободная энергия Гиббса при 298.15 К) для диссоциации этилена в родоначальном трехпалубном комплексе CpCo(μ -C₃B₂H₅)Rh(C₂H₄)₂ (**34'**) приблизительно на 6 ккал моль⁻¹ ниже по сравнению с CpRh(C₂H₄)₂, что указывает на более слабое связывание этилена в **34'**. Это согласуется с некоторым удлинением связей Rh–C(C₂H₄) и понижением порядка связи по Майеру (MBO) для Rh–C₂H₄ в трехпалубном комплексе.

Сравнение метилированных комплексов **34** и Cp*Rh(C₂H₄)₂ выявляет аналогичные тенденции: все энергетические параметры для диссоциации этилена в случае трехпалубного комплекса **34** также ниже (на 5.5–6.5 ккал моль⁻¹).

Интересно отметить, что метилирование как трехпалубных комплексов, так и их Ср-аналогов приводит к понижению значений всех энергий для диссоциации этилена (~ на 3–4 ккал моль⁻¹), так что синтезированное нами соединение **34** имеет наиболее лабильную связь Rh– C_2H_4 . Это также косвенно подтверждается быстрым вращением этиленовых лигандов согласно данным ЯМР ¹H.

Таблица 17. Внутренние энергии ΔU , энтальпии ΔH и свободные энергии Гиббса ΔG для диссоциации этилена (при 298.15 K, ккал моль⁻¹), средние расстояния Rh–C(C₂H₄) (Å) и порядки связей по Майеру (MBO) в комплексах (L)Rh(C₂H₄)₂ (L = CpCo(C₃B₂Me₅), CpCo(C₃B₂H₅), Cp*, Cp).

IC	A T 7 [2]	Δ <i>H</i> ^[a]	$\Delta G^{[a]}$	Rh–C ₂ H ₄		
Комплекс	$\Delta U^{[u]}$			av Rh–C ^[a]	av MBO ^[b]	
$CpCo(C_3B_2Me_5)Rh(C_2H_4)_2$ (34)	21.8	22.4	10.9	2.134	1.668	
$Cp*Rh(C_2H_4)_2$	28.3	28.9	16.4	2.135	1.693	
$CpCo(C_{3}B_{2}H_{5})Rh(C_{2}H_{4})_{2}$ (34')	25.8	26.4	13.9	2.136	1.632	
CpRh(C ₂ H ₄) ₂	31.8	32.4	20.3	2.132	1.673	

^[a] На уровне BPBE/L2. ^[b] На уровне BP86/def2-TZVPP//BPBE/L2.

2.2.3 Нейтральные трехпалубные комплексы CpCo(µ-C₃B₂Me₅)ML₃ и CpCo(µ-C₃B₂Me₅)ML₂X

Оказалось, что реакция аниона 27 с комплексами марганца и рения $[Mn(CO)_3(C_{10}H_8)]^+$ и $[Re(CO)_3(T\Gamma\Phi)_2Br]_2$ (являющимися в этих условиях

источниками частиц $[M(CO)_3]^+$ (M = Mn, Re)), приводит к трехпалубным соединениям **35** (67%) и **36** (46%) (схема 45).

Схема 45

При проведении аналогичной реакции [PtMe₃I]₄ с анионом 27 нами был синтезирован первый пример трехпалубного комплекса, содержащего фрагмент PtMe₃ (схема 45). Полученные комплекы 35–37 представляют собой темные твердые вещества, устойчивые на воздухе в течение Они хорошо растворимы длительного времени. В большинстве органических растворителей, включая алифатические и ароматические углеводороды. Соединения были идентифицированы нами с помощью ИК-, ¹Н и ¹¹В ЯМР-спектроскопии. В ИК-спектрах комплексов 35 и 36 присутствуют полосы поглощения карбонильных групп при v_{CO} = 1997, 1915 (M = Mn) и 1997, 1898 см⁻¹ (M = Re), соответственно. Сдвиги полос поглощения в низкочастотную область по сравнению с родственными циклопентадиенильными комплексами CpMn(CO)₃ (2026, 1935 см⁻¹)¹⁰⁵ и $CpRe(CO)_3$ (2030, 1939 см⁻¹)¹⁰⁶ свидетельствуют о более донорном характере сэндвичевого лиганда СрСо(1,3-С₃В₂Ме₅) по сравнению с Срлигандом.

В спектре ЯМР ¹Н комплекса **37** наблюдается расщепление сигналов протонов метильных групп на атоме ¹⁹⁵Рt (Pt–Me $J_{PtH} = 73.6$ Гц; Pt–Me_{C3B2}

 $J_{\text{PtH}} = 12.0 \ \Gamma$ ц). Полученные величины констант близки к описанным ранее для комплекса Cp*PtMe₃ (Pt–Me $J_{\text{PtH}} = 79.0 \ \Gamma$ ц; Pt–Me_{Cp*} $J_{\text{PtH}} = 8.0 \ \Gamma$ ц).¹⁰⁷

Кроме того, мы исследовали взаимодействие карбонилхлорида рутения [Ru(CO)₃Cl₂]₂ с анионом **27**. Оказалось, что наряду с ожидаемым образованием дикарбонилхлорида **38** были выделены значительные количества комплекса **39** (схема 46).

Схема 46

С помощью хроматографии нам удалось выделить оба вещества в аналитически чистом виде. Комплексы **38** и **39** представляют собой стабильные на воздухе темные твердые вещества, хорошо растворимые в полярных органических растворителях (CH₂Cl₂, MeCN и др.). Продукты были идентифицированы с помощью ИК-, ¹Н и ¹¹В ЯМР-спектроскопии.

Структуры трехпалубных комплексов $CpCo(\mu-C_3B_2Me_5)PtMe_3$, $CpCo(\mu-C_3B_2Me_5)Ru(CO)_2Cl u CpCo(\mu-C_3B_2Me_5)Ru(CO)_2-Ru(CO)_2Cp$

Строение трехпалубного комплекса **37** было дополнительно подтверждено с помощью метода рентгеностуктурного анализа (рис. 39). Элементарная ячейка содержит четыре независимые молекулы, которые

отличающиеся конформацией Ср- и С₃В₂-циклов, причем циклы всегда находятся в заторможенной конформации, а отличия наблюдаются лишь в значениях торсионных углов. Плоскости циклопентадиенильного и диборолильного колец в **37** практически параллельны, а атомы металлов располагаются приблизительно над центроидами циклов. Метильные группы слегка отклонены от плоскости С₃В₂-кольца в сторону атома Со на расстояния, лежащие в интервале 0.110(5) \div 0.210(5) Å. Во всех четырех независимых молекулах комплекса **37** имеет место одна и та же ориентация фрагмента PtMe₃ по отношению к C₃B₂Me₅-лиганду: одна из метильных групп находится в транс-положении к атому углерода C6_{C3B2}, а две другие – приблизительно в цис-положении к атомам бора B1 и B2. Величины длин связей Pt-C_{Me} лежат в гораздо более узком интервале (2.043(6) \div 2.061(7) Å) в сравнении с комплексом (C₅H₄Me)PtMe₃ (1.990 \div 2.141 Å).

Рис. **39**. Структура комплекса СрСо(μ -С₃B₂Me₅)PtMe₃ (**37**) (тепловые эллипсоиды 50%-ной вероятности). Атомы водорода не приводятся. Избранные расстояния (Å): Co1–C1 2.051(5), Co1–C2 2.038(5), Co1–C3 2.034(5), Co1–C4 2.049(5), Co1–C5 2.057(5), Co1–C6 2.034(5), Co1–C7 2.028(5), Co1–C8 2.043(5), Co1–B1 2.095(5), Co1–B2 2.061(5), Pt1–C6 2.296(5), Pt1–C7 2.320(5), Pt1–C8 2.307(5), Pt1–C14 2.061(7), Pt1–C15 2.043(6), Pt1–C16 2.054(6), Pt1–B1 2.311(6), Pt1–B2 2.301(5), \angle (C₃B₂/Cp(Co)) 1.9(5)°.

Строение комплексов **38**, **39** также было установлено с помощью метода РСА (рис. 40, 41). Плоскости циклопентадиенильного и

диборолильного циклических лигандов в этих соединениях практически параллельны, соответствующие двугранные углы составляют $C_3B_2/Cp(Co)$ 2.2° (**38**) и $C_3B_2/Cp(Co)$ 1.9° (**39**). В обоих соединениях кольца Cp_{Co} и C_3B_2 находятся в заслоненной конформации. Окружение при атоме Ru в комплексе **38** имеет псевдооктаэдрическую геометрию и проявляет структурные свойства, описанные ранее в литературе для родственных соединений.^{108,109} Комплекс **39** имеет две терминальных и две мостиковых карбонильных группы. C_3B_2 и Cp_{Ru} лиганды находятся в транс-положении относительно вектора Ru–Ru. Длина связи Ru–Ru для **39** (2.7518(4) Å) находится в обычном диапазоне для одинарных связей Ru–Ru. Она лишь слегка удлинена по сравнению с димером [CpRu(μ -CO)(CO)]₂ (2.738 Å)¹¹⁰ и практически совпадает с наблюдаемой в случае [Cp*Ru(μ -CO)(CO)]₂ (2.752 Å).¹¹¹

Рис. 40. Структура комплекса СрСо(μ -С₃B₂Me₅)Ru(CO)₂Cl (**38**) (тепловые эллипсоиды 50%-ной вероятности). Атомы водорода не приводятся. Избранные расстояния (Å): Co1–C1 2.051(2), Co1–C2 2.054(2), Co1–C3 2.059(2), Co1–C4 2.047(2), Co1–C5 2.041(2), Co1–C6 2.037(2), Co1–C7 2.043(2), Co1–C8 2.037(2), Co1–B1 2.102(2), Co1–B2 2.091(2), Ru1–C6 2.263(2), Ru1–C7 2.198(2), Ru1–C8 2.271(2), Ru1–B1 2.324(2), Ru1–B2 2.237(2), \angle (C₃B₂/Cp(Co)) 1.9(5)°.

Рис. 41. Структура комплекса СрСо(μ -С₃B₂Me₅)Ru(CO)₂–Ru(CO)₂Cp (**39**) (тепловые эллипсоиды 50%-ной вероятности). Атомы водорода не приводятся. Избранные расстояния (Å): Co1–C1 2.035(4), Co1–C2 2.052(4), Co1–C3 2.057(4), Co1–C4 2.058(4), Co1–C5 2.044(4), Co1–C6 2.040(3), Co1–C7 2.032(3), Co1–C8 2.034(3), Co1–B1 2.086(4), Co1–B2 2.121(4), Ru1–C6 2.303(3), Ru1–C7 2.303(3), Ru1–C8 2.305(3), Ru1–B1 2.333(4), Ru1–B2 2.284(4), Ru1–Ru2 2.7518(4), \angle (C₃B₂/Cp(Co)) 2.2(6)°.

Электрохимическое поведение нейтральных трехпалубных комплексов СрСо(μ -C₃B₂Me₅)M(CO)₃

Электрохимическое поведение трикарбонильных комплексов **35** и **36** было изучено с помощью метода циклической вольамперометрии. Значения формальных электродных потенциалов для наблюдаемых окислительно-восстановительных процессов приведены в табл. 18.

Таблица 18. Формальные электродные потенциалы (В, относительно НКЭ), а также разница между анодным и катодным пиками (ΔE_p , мВ) для окислительно-восстановительных процессов комплексов **35** и **36** в CH₂Cl₂ и MeCN.^[a]

Комплекс	Растворитель	Окисление	Восстан	ювление
		$E^{\circ}'_{0/+}(\Delta E_{\mathrm{p}})$	$E^{\circ}'_{0/-}(\Delta E_{\rm p})$	$E^{\circ}_{-/2-}(\Delta E_{\rm p})$
35 (Mn)	CH ₂ Cl ₂	+0.97 (88) ^[b]	-1.37 (81)	-
	MeCN	+1.05 ^[d] (-)	-1.20 (65)	-2.04 (64)
36 (Re)	CH ₂ Cl ₂	+1.18 ^[c,d] (-)	-1.37 (68)	-
	MeCN	+1.08 ^[c,d] (-)	-1.22 (70)	-2.12 (69)
Cp*Re(CO) ₃	CH ₂ Cl ₂	+1.30 ^[e] (-)	_	_

^[a] Измерено при скорости сканирования 0.1 В с⁻¹. ^[b] Окислительновосстановительный процесс на атоме марганца. ^[c] Окислительновосстановительный процесс на атоме рения. ^[d] Значение потенциала для необратимого процесса. ^[e] Расщеплен вследствие химических процессов.

Сравнение полученных данных с величинами, описанными в литературе для обычных сэндвичевых соединений Ср*М(СО)₃ показывает, что потенциал первого окислительного процесса Re^I/Re^{II} в случае комплекса **36** на +0.1 В меньше по сравнению с Ср*Re(CO)₃.¹¹² Это указывает на большую донорную способность сэндвичевого аниона 27 по Cp*сравнению с В комплексах с М(СО)₃-фрагментами. $([CpCo(\mu-C_3B_2Me_5)Re(CO)_3]^+)$ Электрогенерируемый [36]+ катион значительно менее стабилен, чем $[Cp*Re(CO)_3]^+$, так что при обратном сканировании не удается однозначно зафиксировать пик восстановления 36 даже при использовании высоких скоростей сканирования и при пониженной температуре (253 К). Интересно отметить, что Мп- $([CpCo(\mu-C_3B_2Me_5)Mn(CO)_3]^+)$ вполне содержащий монокатион [35]⁺ устойчив в растворе CH_2Cl_2 , но разлагается в MeCN.

2.3 Катионные трехпалубные комплексы

В литературе описано, что взаимодействие TICp с $[M(arene)Cl_2]_2$ (M = Ru, Os)^{113,114} в ацетонитриле позволяет с хорошими выходами синтезировать катионные сэндвичевые соединения $[CpM(arene)]^+$. Аналогичным способом при реакции таллиевого производного **27**Tl с галогенидными комплексами $[M(C_5R_5)X_2]_2$ (M = Co, Rh, Ir; R = H, Me; X = Cl, I), выполняющими роль синтонов частиц $[(C_5R_5)M]^{2+}$, нами с выходами до 80% были получены 30-электронные катионные трехпалубные комплексы **40–42**, содержащие два терминальных циклопентадиенильных лиганда (схема 47).

Схема 47

Родственная реакция 27Tl с комплексами [Ru(arene)Cl₂]₂ позволила с высокими выходами синтезировать Ru-содержащие катионные трехпалубные комплексы $[CpCo(\mu-1,3-C_3B_2Me_5)Ru(arene)]^+$ (arene = C_6H_6 **43**a. $p-MeC_6H_4CH(Me)_2$ 43b). Гексафторфосфаты катионов 40-43 представляют собой яркоокрашенные твердые вещества, устойчивые на воздухе. Эти соли хорошо растворяются в полярных органических растворителях, таких как CH_2Cl_2 , $T\Gamma\Phi$, ацетон, ацетонитрил, нитрометан и совершенно нерастворимы в неполярных растворителях, таких как петролейный или диэтиловый эфир, бензол, толуол.

Для успешного синтеза важным моментом является применение таллиевого производного аниона 27 в качестве реагента. Использование калиевой или литиевой солей аниона 27 приводит, как правило, к трудноразделимым смесям продуктов, которые не всегда удается идентифицировать. Это можно объяснить меньшей нуклеофильностью и меньшей восстанавливающей способностью таллиевого производного 27 по сравнению с калиевым и литиевым, что, по-видимому, позволяет существенно снизить протекание побочных реакций. Интересно, что при взаимодействии **27**Tl с комплексом $[CoCp*X_2]_2$ независимо от условий проведения реакции всегда образуется смесь продуктов. Наилучшего выхода (26%) удалось достичь при использовании $[CoCp*I_2]_2$ в реакции с **27**Tl в MeCN. При этом, согласно данным ЯМР ¹H, образуется смесь комплексов **40b/40a**/[CpCoCp*]PF₆ в приблизительном соотношении 1:1:1 (схема 48). Выделить индивидуальные вещества удалось с помощью хроматографии на Al₂O₃.

Сходный результат был нами получен при взаимодействии комплекса **27**Tl с $[Ru(C_6Me_6)Cl_2]_2$. В этом случае была получена смесь комплексов **43c/40a**/[CpRu(C_6Me_6)]⁺ в соотношении 1:1:1 (схема 49); продукты были выделены в чистом виде при использовании хроматографии на Al₂O₃.

Схема 49

При реакции производного **27**Tl с комплексом рутения [Ru(cht)Cl₂]₂ (cht = 1,3,5-циклогептатриен) нами был синтезирован трехпалубный комплекс **44**, который можно рассматривать как аналог Ru-содержащих комплексов **43а–с** с терминальными ареновыми лигандами (схема 50).

Схема 50

Структуры катионных трехпалубных комплексов [CpCo(μ -1,3-C₃B₂Me₅)M(ring)]⁺

Строение катионных трехпалубных комплексов 40a,b 41b, 42a,b, 43a-с было дополнительно подтверждено с помощью метода РСА (рис. 42–49; табл. 19). Все катионы образованы тремя лигандами, между которыми расположены два атома металла. Плоскости циклических лигандов почти параллельны, атомы металлов находятся приблизительно над центроидами колец.

Интересно отметить, что длины связи С–С в мостиковом C_3B_2 -цикле в катионных комплексах **40–43** (1.417 ÷ 1.485 Å) заметно короче по сравнению с нейтральными комплексами **28–30** СрСо(μ -1,3- $C_3B_2Me_5$)M(ring) (M(ring) = RuCp, RuCp*, CoC₄Me₄; 1.495 ÷ 1.517 Å; см. 141 раздел 2.2.1). В то же время длины связей С–В в катионных комплексах **40–43** длиннее (1.555 ÷ 1.641 Å) по сравнению с нейтральными соединениями **28–30** (1.550–1.595 Å). В результате это приводит к увеличению периметра C_3B_2 -кольца в случае катионных трехпалубных комплексов. Интересно, что расстояния от атома металла до плоскости лиганда М…Ср* в комплексах **40a** (1.652 Å; M = Co), **41a** (1.804 Å; M = Rh) и **42a** (1.811 Å; M = Ir) очень близки к соответствующим расстояниям в [CoCp*₂]⁺ (1.655 Å),¹¹⁵ [RhCp*₂]⁺ (1.814 Å)¹¹⁶ и [IrCp*₂]⁺ (1.821 Å),¹¹⁷ что может косвенно указывать на сходство в донорно-акцепторной способности между анионами **27** и Ср*⁻.

Сравнение родственных структур **40а/40b** или **42а/42b** указывает на то, что введение пяти метильных групп в Ср-лиганд приводит к уменьшению расстояния $M \cdots Cp^*$ (на 0.01 Å) и увеличению расстояния $M \cdots C_3B_2$ (на 0.03 Å). Укорочение расстояния $M \cdots Cp^*$ объясняется упрочнением связывания между атомом металла и Ср*-лигандом вследствие донорного эффекта пяти метильных групп. Параллельно происходит ослабление связи атома металла со вторым π -лигандом в соответствии с двухсторонней ориентаций орбиталей атома металла (транс-влияние). Схожие наблюдения были сделаны ранее для нейтральных комплексов и уже упоминались нами выше (см. разделы 1.5 и 2.2.1).

Следует отметить, что в катионных аренсодержащих комплексах рутения **43а–с** увеличение числа алкильных заместителей в ареновом лиганде приводит к удлинению расстояний от атома Ru как до арена (на 0.01 Å), так и до диборолильного лиганда (на 0.03 Å), причем это удлинение тем больше, чем больше алкильных заместителей присутствует в ареновом лиганде. Для сэнвичевых аналогов – соединений $[(C_5R_5)Ru(C_6R_6)]^+$ (R = H, алкил) нами был выполнен поиск в

142

Кембриджском структурном банке данных; оказалось, что такая же закономерность наблюдается и в случае этих сэндвичевых комплексов.^{xvi} Так, наименьшие расстояния Ru…apeн и Ru…Cp* наблюдаются в случае комплекса [(C₅Me₅)Ru(C₆H₆)]⁺ (1.703 и 1.809 Å, соответственно),¹¹⁸ а наибольшие – в случае комплекса [(C₅Me₅)Ru(η^{6} -5,6-дипропил-2,3-дигидро-1H-инден)]⁺ (1.742 и 1.841 Å, соответственно).¹¹⁹

^{xvi} В Кембриджской структурной базе данных было найдено 34 структуры сэндвичевых соеднений $[(C_5R_5)Ru(C_6R_6)]^+$ (R = H, алкил).

Таблица 19. Избранные длины связей, а также расстояния от атомов металлов до плоскостей лигандов в комплексах 40-43 (Å).

	40a	40b	41b	42a	42b	43 a	43 b	43c
М(пиганд)	СоСр	CoCp*	RhCp*	IrCp	IrCp*	$Ru(C_6H_6)$	Ru(p-	$Ru(C_6Me_6)$
							C ₆ H ₄ MePr ⁱ)	
Со…Ср	1.656	1.648	1.649	1.655	1.648	1.656	1.645	1.644
$Co \cdots C_3 B_2$	1.582	1.572	1.573	1.561	1.563	1.568	1.562	1.563
$M \cdots C_3 B_2$	1.582	1.604	1.760	1.731	1.763	1.737	1.756	1.764
$M \cdots C_5$	1.658	1.652	1.804	1.822	1.811	_	_	_
$M \cdots C_6$	_	_	_	_		1.695	1.705	1.708
Периметр	7.755(5)	7.755(4)	7.825(3)	7.825(16)	7.861(4)	7.846(6)	7.826(5)	7.815(3)
C_3B_2								
С7–С8	1.462(5)	1.464(3)	1.478(3)	1.417(15)	1.484(3)	1.474(6)	1.463(5)	1.485(3)
С7–В1,	1.601(6),	1.592(4),	1.596(3),	1.641(16),	1.604(4),	1.613(6),	1.592(5),	1.594(3),
C8–B2	1.587(5)	1.591(4)	1.608(3)	1.605(17)	1.610(3)	1.626(7)	1.621(5)	1.590(1)
C6–B1,	1.546(6),	1.570(3),	1.570(3),	1.551(18),	1.580(4),	1.567(6),	1.566(5),	1.570(3),
С6-В2	1.564(5)	1.558(4)	1.575(3)	1.613(15)	1.582(4)	1.566(7)	1.588(5)	1.576(3)

Рис. 42. Структура катиона $[CpCo(\mu-C_3B_2Me_5)CoCp]^+$ (40a) (тепловые эллипсоиды 50%-ной вероятности). Атомы водорода не приводятся. Избранные расстояния (Å): Co1–C1 2.045(4), Co1–C2 2.033(4), Co1–C3 2.048(4), Co1–CA 2.055(4), Co1–C5 2.054(4), Co1–C6 2.039(4), Co1–C7 2.046(4), Co1–C8 2.036(4), Co1–B1 2.076(4), Co1–B2 2.104(4), Co2–C6 2.054(3), Co2–C7 2.027(4), Co2–C8 2.046(4), Co2–C14 2.048(4), Co2–C15 2.046(4), Co2–C16 2.048(4), Co2–C17 2.047(4), Co2–C18 2.057(4), Co2–B1 2.072(4), Co2–B2 2.100(4), \angle (C₃B₂/Cp(Co1)) 1.9(6)°, \angle (C₃B₂/Cp(Co2)) 2.8(6)°

Рис. 43. Структура катиона [CpCo(μ -C₃B₂Me₅)CoCp*]⁺ (40b) (тепловые эллипсоиды 50%-ной вероятности). Атомы водорода не приводятся. Избранные расстояния (Å): Co1–C1 2.048(3), Co1–C2 2.035(3), Co1–C3 2.032(3), Co1–C4 2.047(3), Co1–C5 2.043(3), Co1–C6 2.044(2), Co1–C7 2.025(2), Co1–C8 2.034(2), Co1–B1 2.080(3), Co1–B2 2.090(3), Co2–C6 2.074(2), Co2–C7 2.055(2), Co2–C8 2.053(2), Co2–C14 2.044(3), Co2–C15 2.054(2), Co2–C16 2.060(2), Co2–C17 2.061(2), Co2–C18 2.041(2), Co2–B1 2.095(3), Co2–B2 2.118(3), \angle (C₃B₂/Cp(Co1)) 1.7(6)°, \angle (C₃B₂/Cp(Co2)) 1.1(6)°

Рис. 44. Структура катиона $[CpCo(\mu-C_3B_2Me_5)RhCp^*]^+$ (41b) (тепловые эллипсоиды 50%-ной вероятности). Атомы водорода не приводятся. Избранные расстояния (Å): Co1–C1 2.044(2), Co1–C2 2.047(3), Co1–C3 2.033(2), Co1–C4 2.041(2), Co1–C5 2.046(3), Co1–C6 2.049(2), Co1–C7 2.038(2), Co1–C8 2.038(2), Co1–B1 2.090(3), Co1–B2 2.088(2), Rh1–C6 2.194(2), Rh1–C7 2.189(2), Rh1–C8 2.200(2), Rh1–C14 2.188(2), Rh1–C15 2.187(2), Rh1–C16 2.188(2), Rh1–C17 2.168(2), Rh1–C18 2.167(2), Rh1–B1 2.237(2), Rh1–B2 2.215(2), \angle (C₃B₂/Cp(Co)) 1.8(6)°, \angle (C₃B₂/Cp(Rh)) 1.7(6)°

Рис. 45. Структура катиона $[CpCo(\mu-C_3B_2Me_5)IrCp]^+$ (42a) (тепловые эллипсоиды 50%-ной вероятности). Атомы водорода не приводятся. Избранные расстояния (Å): Co1–C1 2.032(10), Co1–C2 2.048(12), Co1–C3 2.061(11), Co1–C4 2.040(11), Co1–C5 2.016(12), Co1–C6 2.014(11), Co1–C7 2.029(12), Co1–C8 2.059(12), Co1–B1 2.070(11), Co1–B2 2.088(11), Ir1–C6 2.157(12), Ir1–C7 2.164(11), Ir1–C8 2.170(10), Ir1–C14 2.169(11), Ir1–C15 2.144(12), Ir1–C16 2.180(12), Ir1–C17 2.170(12), Ir1–C18 2.184(12), Ir1–B1 2.213(14), Ir1–B2 2.212(14), \angle (C₃B₂/Cp(Co1A)) 1.8(6)°, \angle (C₃B₂/Cp(Ir1)) 3.2(6)°

Рис. 46. Структура катиона $[CpCo(\mu-C_3B_2Me_5)IrCp^*]^+$ (42b) (тепловые эллипсоиды 50%-ной вероятности). Атомы водорода не приводятся. Избранные расстояния (Å): Co1–C1 2.042(3), Co1–C2 2.046(3), Co1–C3 2.039(3), Co1–C4 2.031(3), Co1–C5 2.044(3), Co1–C6 2.032(2), Co1–C7 2.035(2), Co1–C8 2.045(2), Co1–B1 2.094(3), Co1–B2 2.078(3), Ir1–C6 2.198(2), Ir1–C7 2.193(2), Ir1–C8 2.201(2), Ir1–C14 2.195(2), Ir1–C15 2.178(2), Ir1–C16 2.180(2), Ir1–C17 2.189(2), Ir1–C18 2.195(2), Ir1–B1 2.243(3), Ir1–B2 2.227(3), \angle (C₃B₂/Cp(Co)) 2.1(6)°, \angle (C₃B₂/Cp(Ir)) 1.3(6)°

Рис. 47. Структура катиона [CpCo(μ -C₃B₂Me₅)RuC₆H₆]⁺ (43a) (тепловые эллипсоиды 30%-ной вероятности). Атомы водорода не приводятся. Избранные расстояния (Å): Co1–C1 2.050(5), Co1–C2 2.053(5), Co1–C3 2.092(5), Co1–C4 2.112(5), Co1–C5 2.087(5), Co1–C6 2.103(8), Co1–C7 2.103(8), Co1–C8 2.144(9), Co1–B1 2.138(10), Co1–B2 2.158(11), Ru1–C6 2.149(8), Ru1–C7 2.102(9), Ru1–C8 2.153(9), Ru1–C14 2.175(9), Ru1–C15 2.163(8), Ru1–C16 2.180(8), Ru1–C17 2.196(8), Ru1–C18 2.160(8), Ru1–C19 2.146(8), Ru1–B1 2.177(11), Ru1–B2 2.175(10), \angle (C₃B₂/Cp(Co)) 2.5(6)°, \angle (C₃B₂/Cp(Ru)) 2.3(6)°

Рис. 48. Структура [CpCo(μ -C₃B₂Me₅)Ru(1,4-MeC₆H₄Prⁱ)]⁺ (43b) (тепловые эллипсоиды 50%-ной вероятности). Атомы водорода не приводятся. Избранные расстояния (Å): Co1–C1 2.036(4), Co1–C2 2.034(4), Co1–C3 2.054(3), Co1–C4 2.041(3), Co1–C5 2.027(3), Co1–C6 2.045(3), Co1–C7 2.021(3), Co1–C8 2.036(3), Co1–B1 2.075(3), Co1–B2 2.087(4), Ru1–C6 2.195(3), Ru1–C7 2.181(3), Ru1–C8 2.178(3), Ru1–C14 2.226(4), Ru1–C15 2.211(3), Ru1–C16 2.214(3), Ru1–C17 2.235(3), Ru1–C18 2.196(3), Ru1–C19 2.192(3), Ru1–B1 2.220(3), Ru1–B2 2.245(4), \angle (C₃B₂/Cp(Co)) 1.4(5)°, \angle (C₃B₂/Cp(Ru)) 1.8(5)°

Рис. 49. Структура катиона [CpCo(μ -C₃B₂Me₅)RuC₆Me₆]⁺ (43c) (тепловые эллипсоиды 50%-ной вероятности). Атомы водорода не приводятся. Избранные расстояния (Å): Co1 C1 2.041(2), Co1 C2 2.047(2), Co1 C3 2.044(2), Co1 C4 2.041(2), Co1 C5 2.034(2), Co1 C6 2.059(2), Co1 C7 2.044(2), Co1 C8 2.025(2), Co1 B1 2.066(2), Co1 B2 2.066(2), Ru1 C6 2.217(2), Ru1 C7 2.197(2), Ru1 C8 2.191(2), Ru1 C14 2.230(2), Ru1 C15 2.220(2), Ru1 C16 2.230(2), Ru1 C17 2.226(2), Ru1 C18 2.225(2), Ru1 C19 2.217(2), Ru1 B1 2.217(2), Ru1 B2 2.224(2), \angle (C₃B₂/Cp(Co)) 0.5(6)°, \angle (C₃B₂/Cp(Ru)) 1.0(6)°

Электрохимическое поведение катионных трехпалубных комплексов $[CpCo(\mu-C_3B_2Me_5)M(ring)]^+$

Электрохимическое поведение катионных комплексов **40–43** $[CpCo(C_3B_2Me_5)M(ring)]^+$ (M(ring) = CoCp, RhCp, IrCp, RhCp*, IrCp*, Ru(C₆H₆), Ru(*p*-MeC₆H₄Prⁱ)) было исследовано с помощью метода циклической вольамперометрии. Оно в значительной степени сходно с поведением их нейтральных аналогов **28–29** CpCo(C₃B₂Me₅)M(C₅R₅) (M = Fe, Ru; R = H, Me) (см. раздел 2.2.1). Значения формальных электродных потенциалов для окислительно-восстановительных процессов, наблюдаемых в случае комплексов **40–42**, приведены в табл. 20.

Таблица 20. Формальные электродные потенциалы (В, относительно НКЭ), а также разница между анодным и катодным пиками (ΔE_p , мВ) для окислительно-восстановительных процессов комплексов **40–42** в CH₂Cl₂ и MeCN.^[a]

Комплекс (M(C ₅ R ₅))	Растворитель	Восстановление			
		$E^{\circ}{}^{\prime}{}_{+\!/2^+}(\Delta E_{ m p})$	$E^{\circ}'_{+/0} (\Delta E_{\rm p})$	$E^{\circ}{}_{0/-}(\Delta E_{\mathrm{p}})$	
[40a] ⁺ (CoCp)	CH_2Cl_2	_	-0.60 (61)	-1.66 (67)	
	MeCN	+1.75 ^[b] (117)	-0.60 (72)	-1.53 (99)	
[41a] ⁺ (RhCp)	CH_2Cl_2	_	-0.73 (73)	-1.77 (82)	
	MeCN	+1.81 ^[b,c] (-)	-0.73 (68)	-1.60 (74)	
[41b] ⁺ (RhCp*)	CH_2Cl_2	+1.78 ^[c] (-)	-0.94 (78)	-1.96 (162 ^[d])	
	MeCN	$+1.71^{[b]} (87^{[e]})$	-0.94 (73)	-1.82 (92 ^[e])	
[42a] ⁺ (IrCp)	CH ₂ Cl ₂	_	-0.86 (69)	-1.96 (88 ^[e])	
	MeCN	+1.80 (84)	-0.86 (73)	-1.82 (92)	
[42b] ⁺ (IrCp*)	CH ₂ Cl ₂	+1.81 ^[b] (133 ^[e])	-1.00 (80)	-2.08 ^[c] (-)	
	MeCN	+1.70 (98 ^[e])	-0.99 (83)	-1.96 (64)	

^[a] Измерено при скорости сканирования 0.1 В с⁻¹. ^[b] Частично химически обратим. ^[c] Данные квадратно-волновой вольтамперометрии. ^[d] Измерено при скорости сканирования 5.12 В с⁻¹. ^[e] Измерено при скорости сканирования 1.00 В с⁻¹.

В качестве примера рассмотрим электрохимическое поведение Co₂ трехпалубного комплекса **40a**. Он способен претерпевать два процесса одноэлектронного восстановления и один процесс одноэлектронного окисления; все процессы обратимы в масштабе времени циклической вольтамперометрии (рис. 50).

Рис. 50. Циклическая вольтамперограмма для комплекса [**40a**]⁺ в MeCN (1.5×10^{-3} моль дм⁻³). Стеклоуглеродный электрод; поддерживающий электролит [NEt₄]PF₆ (0.1 моль дм⁻³); скорость сканирования 0.2 B c⁻¹.

Анализ ЦВА-профилей для одноэлектронного восстановления Со2катиона **40**а при контролируемом потенциале ($E_w = -0.8$ V) при различных скоростях сканирования ($0.02 \div 2.00 \text{ B c}^{-1}$) свидетельствует о химической и электрохимической обратимости окислительно-восстановительных процессов: (1) отношение токов i_{pa}/i_{pc} постоянно равно 1; (2) разница между пиками только при самой высокой скорости сканирования незначительно отличается от теоретического значения 60 мВ; (3) функция *i*_{pc}·*v*^{-1/2} является константой.⁴⁵ Кроме этого, большое различие между потенциалами 1-го и 2-го восстановительных процессов указывает на то, что генерируемая на 1-ой стадии восстановления нейтральная форма $CpCo^{III}(\mu-C_3B_2Me_5)Co^{II}Cp$, является полностью делокализованной смешанно-валентной частицей (К_{взаим} > 10¹⁷, класс III по классификации Робина-Дэя).¹²⁰

Интересно, что хотя восстановление не приводит к изменению зелено-коричневого цвета раствора комплекса 40а, при восстановлении в

ИК-спектре появляется полоса поглощения в ближнем ИК-регионе (рис. 51).

Рис. 51. Наблюдаемые в ИК-регионе спектральные изменения, зарегистрированные с помощью ячейки OTTLE при одноэлектронном восстановлении комплекса [**40a**]⁺.

В целом, наблюдаемая для комплекса **40a** последовательность редокс-процессов характерна и для всех остальных монокатионных трехпалубных комплексов. При этом окислительно-восстановительные потенциалы процессов зависят от используемого растворителя, природы металлов, а также природы заместителей при терминальных лигандах. Иногда это приводит к смещению потенциала в область разряда растворителя. Так, на рис. 52 приведены ЦВА-профили для катионных комплексов **41a** и **41b**, в случае которых процесс окисления маскируется в хлористом метилене, но четко проявляется в ацетонитриле. Также можно

видеть, что метилированный комплекс **41b** окисляется легче, чем его незамещенный аналог **41a**.

Рис. 52. Циклические вольтамперограммы для комплексов [**41a**]⁺ и [**41b**: (a) раствор [**41a**]⁺ в CH₂Cl₂ (1.0×10^{-3} моль дм⁻³); (b) раствор [**41b**]⁺ в CH₂Cl₂ (0.5×10^{-3} моль дм⁻³); (c) раствор [**41a**]⁺ в MeCN (0.7×10^{-3} моль дм⁻³); (d) раствор [**41b**]⁺ в MeCN (0.7×10^{-3} моль дм⁻³). Стеклоуглеродный электрод; поддерживающие электролиты: (a, b) раствор [NBu₄]PF₆ в CH₂Cl₂ (0.2 моль дм^{-3}); (c, d) раствор [NEt₄]PF₆ в MeCN (0.1 моль дм^{-3}); скорость сканирования: (a) 0.2 B c^{-1} ; (b) 5.12 B c⁻¹; (c, d) 1.0 B c⁻¹.

В табл. 21 приведены данные для поглощения в УФ/видимом регионе, а также цвет раствора для комплексов **40–42** до и после первого одноэлектронного восстановления. Сравнение спектров незамещенных катионов **41a** и **42a** с их метилированными аналогами **41b** и **42b** указывает на смещение максимумов поглощения в длинноволновую область.

Таблица 21. Максимумы поглощения в УФ/видимом регионе, а также цвет комплексов 40-42 до и после одноэлектронного растворов для восстановления в CH₂Cl₂ и MeCN.

Комп-	$M(C_5R_5)$	CH_2Cl_2	MeCN	
лекс		цвет (λ _{max} , нм)	цвет (λ_{max} , нм)	
40e+	CoCn	Зелено-коричневый (345,	Зелено-коричневый (341,	
40a	Cocp	404)	403)	
40 9 ⁰	CoCn	Зелено-коричневый (345,	Зелено-коричневый (341,	
4 0a	Cocp	404, 958 ^[a])	403 (пл.), 958 ^[a])	
41 a ⁺	RhCp	Красный (331, 408 (пл.))	Красный (329, 408 (пл.))	
41 a ⁰	PhCn	Запаций (331 /30 670 ^[a])	Зеленый (329, 408 (пл.),	
41a KiiCp		Эсленый (331, 430, 070-7)	670 ^[a])	
41b ⁺ DhCn ²		Оранжевый (342, 430,	Оранжевый (340–430(пп.))	
410	Kiicp	510)	Оранжевый (340, 430(пл.))	
41b ⁰ RhCp*		Оливково-зеленый (342,	_[b]	
		430 (пл.), 670)		
42a+	IrCp	Оранжевый (312)	Оранжевый (313)	
12 9 ⁰	IrCn	Темно-оранжевый (312,	Коричневый (313, 371,	
42a IICp		386, 512 ^[a])	483 ^[a])	
42b+	IrCn*	Оранжевый (325, 392 ^[а]	Оранжевый (323–393 (пл.))	
	n Cp	(пл.), 512)	(111.))	
42b ⁰	IrCp*	_[b]	_[c]	

^[а] Среднее значение. ^[b] Легко окисляется. ^[с] Комплекс не стабилен.

Окислительно-восстановительное поведение аренрутениевых комплексов 43а, b, в целом, напоминает поведение катионов 40-42: они способны претерпевать два восстановительных и один окислительный процесс, и могут, таким образом, существовать в четырех редокс-формах. Значения формальных электродных потенциалов для окислительновосстановительных процессов комплексов **43а,b** приведены в табл. 22. На рис. 53 приведены ЦВА-профили для цимолрутениевого комплекса **43b** в различных растворителях.

Таблица 22. Формальные электродные потенциалы (В, относительно НКЭ), а также разница между анодным и катодным пиками (ΔE_p , мВ) для окислительно-восстановительных процессов комплексов **43a**,**b** в CH₂Cl₂ и MeCN.^[a]

Комплекс	Растворитель	Восстановление			
(Ru(arene))	1	$E^{\circ}_{+/2+}(\Delta E_{\mathrm{p}})$	$E^{\circ}_{+/0} (\Delta E_{\rm p})$	$E^{\circ}{}_{0/-}(\Delta E_{ m p})$	
[43a] ⁺	CH ₂ Cl ₂	_ [b]	-1.04 (59)	-2.13 ^[c] (-)	
$(\operatorname{Ru}(\operatorname{C}_6\operatorname{H}_6))$	MeCN	+1.56 ^[c] (-)	-0.95 (59)	-1.90 (62)	
[43b] ⁺	CH ₂ Cl ₂	+1.63 (120 ^[d])	-1.02 (72)	-2.09 ^[c] (-)	
$(\operatorname{Ru}(p-\operatorname{MeC}_{6}\operatorname{H}_{4}\operatorname{Pr}^{i}))$	MeCN	+1.55 ^[c] (-)	-0.98 (64)	-1.95 (-)	

^[a] Измерено при скорости сканирования 0.1 В с⁻¹. ^[b] Маскируется разрядом растворителя. ^[c] Данные квадратно-волновой вольтамперометрии. ^[d] Измерено при скорости сканирования 2.0 В с⁻¹.

Рис. 53. Циклические вольтамперограммы для комплекса $[43b]^+$: (a) раствор в CH₂Cl₂ (0.5 × 10⁻³ моль дм⁻³); (b) раствор в MeCN (0.7 × 10⁻³ моль дм⁻³). Золотой электрод; поддерживающий электролит: (a) [NBu₄]PF₆ (0.2 моль дм⁻³); (b) [NEt₄]PF₆ (0.1 моль дм⁻³); скорость сканирования: (a) 1.0 В c^{-1} ; (b) 0.2 В c^{-1} .

2.4 Четырехпалубные комплексы

2.4.1 Нейтральные четырехпалубные комплексы

При взаимодействии двух эквивалентов аниона **27** с галогенидами переходных металлов MX_2 (M = Fe, Co, X = Cl; M = Ni, X = Br) нами был синтезирован ряд четырехпалубных комплексов CpCo(μ -C₃B₂Me₅)M(μ -C₃B₂Me₅)CoCp (**45–47**; схема 51), которые содержат 42 (CoFeCo), 43 (Co₃) или 44 (CoNiCo) валентных электрона.

Следует отметить, что Со₃- и CoNiCo-комплексы **46** и **47**, в отличие от их металлоценовых аналогов (Ср₂Со и Ср₂Ni), стабильны в твердом виде на воздухе в течение, как минимум, нескольких дней. Вероятно, это объясняется более эффективной делокализацией неспаренных электронов в многопалубных структурах. Напротив, CoFeCo-комплекс **50** неустойчив к действию воздуха даже в твердом виде. Это можно объяснить высокоспиновой конфигурацией атома железа.

Согласно данным спектроскопии ЯМР ¹Н комплексы **45–47** парамагнитны. Спектры ЯМР ¹Н для Co₃- и CoNiCo-комплексов **46** и **47** хорошо воспроизводят друг друга: в обоих случаях сигналы протонов лежат в интервале $-11 \div 26$ м.д., причем родственные сигналы для **46/47** находятся в пределах ± 2 м.д. Для CoFeCo четырехпалубного комплекса **45** данные спектроскопии ЯМР ¹Н сильно отличаются от результатов для **46** и **47**. В этом случае сигналы протонов проявляются в значительно более широком интервале: $-86 \div 32$ м.д.

В спектрах ЯМР ¹¹В для СоFeCo- и Со₃-комплексов сигнал от атомов бора С₃В₂-лиганда наблюдается при 551.4 и 306.3 м.д., соответственно; в случае CoNiCo-комплекса его не удалось зафиксировать.

161

Структуры нейтральных четырехпалубных комплексов СрСо(µ-С₃B₂Me₅)М(µ-C₃B₂Me₅)СоСр

Дополнительное подтверждение строения четырехпалубных комплексов **45–47** было получено с помощью метода РСА (рис. 54–56). Как и ожидалось, все комплексы имеют четырехпалубную структуру, которая образована четырьмя циклическими лигандами, между которыми расположены три атома металла. Во всех случаях плоскости циклических лигандов практически параллельны (наблюдаемые двугранные углы Cp_{Co}/C_3B_2 лежат в интервале $1.5 \div 3.2^\circ$), атомы металлов расположены практически над центроидами колец. В соответствии с увеличением числа неспаренных электронов расстояние Ni…C₃B₂ в **47** значительно длиннее (1.721 Å, 2 неспаренных электрона), чем сходное расстояние Co(2)…C₃B₂ в **46** (1.663 Å, 1 неспаренный электрон) (см. табл. 23).

Также интересно было сравнить четырехпалубный CoNiCo комплекс (47) с родственным трехпалубным CoNi комплексом (31), поскольку оба комплекса имеют два неспаренных электрона. Оказалось, что в 47 расстояние Ni…C₃B₂ (1.721 Å) существенно больше соответствующего расстояния в 31 (1.687 Å), а расстояния Co…C₃B₂ и Co…Cp в 47 (1.583 и 1.655 Å, соответственно) заметно короче аналогичных расстояний в 31 (1.640 и 1.698 Å). На основании этих данных можно предположить, что в случае четырехпалубного комплекса 47 неспаренные электроны в значительной степени локализованы вблизи атома Ni, тогда как в случае трехпалубного комплекса 31 делокализация осуществляется по всему трехпалубному каркасу.

Рис. 54. Структура комплекса СрСо(μ -С₃В₂Ме₅)Fe(μ -С₃В₂Ме₅)СоСр (45) (тепловые эллипсоиды 50%-ной вероятности). Атомы водорода не приводятся. Избранные расстояния (Å): Co1–C1 2.038(4), Co1–C2 2.048(4), Co1–C3 2.045(4), Co1–C4 2.061(5), Co1–C5 2.061(4), Co1–C6 1.930(7), Co1–C7 2.088(7), Co1–C8 2.014(8), Co1–B1 1.988(8), Co1–B2 1.984(11), Fe1–C6 2.031(8), Fe1–C7 1.988(8), Fe1–C8 2.091(9), Fe1–B1 2.035(9), Fe1–B2 2.058(11), ∠(C₃B₂/Cp(Co)) 3.2(6)°

Рис. 55. Структура комплекса СрСо(μ -С₃B₂Me₅)Со(μ -С₃B₂Me₅)СоСр (46) (тепловые эллипсоиды 50%-ной вероятности). Атомы водорода не приводятся. Избранные расстояния (Å): Co1–C1 2.059(4), Co1–C2 2.045(4), Co1–C3 2.057(4), Co1–C4 2.058(4), Co1–C5 2.064(4), Co1–C6 2.065(4), Co1–C7 2.069(4), Co1–C8 2.066(4), Co1–B1 2.094(4), Co1–B2 2.085(4), Co2–C6 2.129(3), Co2–C7 2.121(4), Co2–C8 2.119(3), Co2–B1 2.118(4), Co2–B2 2.131(3), \angle (C₃B₂/Cp(Co)) 1.5(5)°

Рис. 56. Структура комплекса СрСо(μ -С₃В₂Ме₅)Ni(μ -С₃В₂Ме₅)СоСр (47) (тепловые эллипсоиды 50%-ной вероятности). Атомы водорода не приводятся. Избранные расстояния (Å): Co1–C1 2.0679(13), Co1–C2 2.0657(13), Co1–C3 2.0562(15), Co1–C4 2.0655(14), Co1–C5 2.0728(13), Co1–C6 2.0768(14), Co1–C7 2.0712(12),Co1–C8 2.0742(13), Co1–B1 2.0986(13), Co1–B2 2.0902(13), Ni1–C6 2.1677(12), Ni1–C7 2.1709(13), Ni1–C8 2.1666(13), Ni1–B1 2.1724(12), Ni1–B2 2.1751(12), \angle (C₃B₂/Cp(Co)) 1.7(6)°

2.4.2 Катионные четырехпалубные комплексы

При действии HBF₄ на Co₃- и CoNiCo-комплексы **46** и **47** в присутствии воздуха в результате одноэлектронного окисления нами были получены соответствующие катионные четырехпалубные комплексы **48** и **49** (схема 52), которые представляют собой стабильные на воздухе твердые вещества черного цвета.

Схема 52

Согласно данным спектроскопии ЯМР ¹Н четырехпалубный катионный Co₃ комплекс **48** является диамагнитным (42 валентных электрона). Наблюдаемый для него набор сигналов приблизительно сооответствует набору сигналов для трехпалубного катионного Co₂ комплекса **40a**, однако в случае **48** практически все сигналы смещены в область сильного поля на 0.2–0.3 м.д.

Хотя катионный четырехпалубный CoNiCo комплекс **49** является парамагнитным (43 валентных электрона), однако для него бо́льшая часть

сигналов в спектре ЯМР ¹Н расположена в диамагнитной области в регионе $0 \div 5$ м.д., в отличие от изоэлектронного нейтрального четырехпалубного Co₃ комплекса **46**. Это косвенно свидетельствует о локализации неспаренного электрона на атоме Ni, и, как следствие, слабом влиянии этого электрона на положение сигналов в спектре ЯМР ¹Н.

Структуры катионных четырехпалубных комплексов $[CpCo(\mu-C_3B_2Me_5)M(\mu-C_3B_2Me_5)CoCp]^+$

Строение катионных комплексов **48** и **49** было дополнительно подтверждено с помощью метода рентгенострктурного анализа (табл. 23, рис. 57 и 58).

Оба комплекса имеют четырехпалубную структуру, образованную четырьмя циклическими лигандами, между которыми расположены три атома металла. Во всех случаях плоскости циклических лигандов практически параллельны (наблюдаемые двугранные углы Ср_{Со}/С₃В₂ лежат в интервале $0.9 \div 1.7^{\circ}$; для CoNiCo комплекса **49** угол C₃B₂/C₃B₂ составляет 1.7°), атомы металлов расположены практически над центроидами колец. Расстояния от атома металла до плоскости М····C₃B₂ в Co₃ и CoNiCo комплексах **48** (1.595 Å) и **49** (1.674 Å) заметно меньше наблюдаемых в их нейтральных аналогах 46 (1.664 Å) и 47 (1.762 Å), что согласуется с удалением одного неспаренного электрона в каждом случае. Неспаренный электрон в CoNiCo катионе 49, как и в его нейтральном аналоге 47, предположительно Ni. локализован на атоме 0 чем косвенно свидетельствуют величины расстояний Со…С₃В₂ (1.580 Å) и Со…Ср (1.651 Å), которые практически идентичны соответствующим расстояниям, наблюдавшимся для многих диамагнитных нейтральных и катионных трехпалубных комплексов (28–30 и 40–43; см. табл. 10 20, И

соответственно). Аналогичным образом, наблюдаемые для диамагнитного четырехпалубного Co₃ катиона **48** расстояния Co···Cp (1.666 Å) и Co···C₃B₂ (1.581, 1.595 Å) лежат в том же регионе, что и соответствующие расстояния для трехпалубного Co₂ катиона **40a** (Co···Cp 1.656; Co···C₃B₂ 1.582 Å).

Таблица 23. Расстояния от атомов металлов до плоскостей лигандов в четырехпалубных комплексах $[CpCo(\mu-C_3B_2Me_5)M(\mu-C_3B_2Me_5)CoCp]^{n+}$ (45–49) (Å), а также их трехпалубных аналогах $[CpCo(\mu-C_3B_2Me_5)MCp]^{n+}$ **31**, **40**а.

	45	46	47	48	49	31	40a
М	Fe	Со	Ni	Со	Ni	Ni	Со
n	0	0	0	1	1	0	1
Со…Ср	1.660	1.669	1.655	1.666	1.651	1.698	1.656
$Co\cdots C_3B_2$	1.513	1.604	1.583	1.581	1.581	1.640	1.582
$M \cdots C_3 B_2$	1.693	1.664	1.762	1.595	1.674	1.687	1.582

Рис. 57. Структура катиона [CpCo(μ -C₃B₂Me₅)Co(μ -C₃B₂Me₅)CoCp]⁺ (48) (тепловые эллипсоиды 30%-ной вероятности). Атомы водорода не приводятся. Избранные расстояния (Å): Co1–C1 2.057(3), Co1–C2 2.060(3), Co1–C3 2.059(3), Co1–C4 2.057(3), Co1–C5 2.056(3), Co1–C6 2.055(7), Co1–C7 2.055(7), Co1–C8 2.036(9), Co1–B1 2.044(8), Co1–B2 2.049(8), Co2–C6 2.047(6), Co2–C7 2.044(7), Co2–C8 2.067(8), Co2–B1 2.099(8), Co2–B2 2.090(7), \angle (C₃B₂/Cp(Co)) 0.9(7)°

Рис. 58. Структура катиона [CpCo(μ -C₃B₂Me₅)Ni(μ -C₃B₂Me₅)CoCp]⁺ (49) (тепловые эллипсоиды 50%-ной вероятности). Атомы водорода не приводятся. Избранные расстояния (Å): Co1–C1 2.048(4), Co1–C2 2.044(3), Co1–C3 2.045(3), Co1–C4 2.081(4), Co1–C5 2.065(2), Co1–B1 2.035(2), Co2–C9 2.097(4), Co2–C10 2.046(2), Co2–C14 2.035(3), Co2–C15 2.030(3), Co2–C16 2.033(4), Co2–B2 2.037(2), Ni1–C4 2.126(3), Ni1–C5 2.125(2), Ni1–C9 2.149(4), Ni1–C10 2.112(2), Ni1–B1 2.134(2), Ni1–B2 2.130(2), \angle (C₃B₂/Cp(Co1)) 0.7(6)°, \angle (C₃B₂/Cp(Co2)) 1.7(6)°, \angle (C₃B₂/C₃B₂) 1.7(6)°

Электрохимическое поведение четырехпалубного комплекса СрСо(µ-C₃B₂Me₅)Ni(µ-C₃B₂Me₅)CoCp

Электрохимическое поведение нейтрального четырехпалубного CoNiCo комплекса **47** было исследовано с помощью метода ЦВА. Интересно было сравнить его с родственным трехпалубным CoNi комплексом **31**, поскольку оба комплекса имеют 2 неспаренных электрона.

Значения формальных электродных потенциалов для окислительновосстановительных процессов, наблюдаемых в случае этих комплексов, приведены в табл. 24, а соответствующие ЦВА-профили даны на рис. 59.

Таблица 24. Формальные электродные потенциалы (В, относительно НКЭ), а также разница между анодным и катодным пиками (ΔE_p , мВ) для окислительно-восстановительных процессов комплексов **31** и **47** в CH₂Cl₂ и MeCN.^[a]

Комплекс	Растворитель	Окисление	Восстановление
----------	--------------	-----------	----------------

		$E^{\circ}'_{0/+}(\Delta E_{\rm p})$	$E^{\circ}_{+/2+}(\Delta E_{\rm p})$	$E^{\circ}{}'_{0/-}\left(\Delta E_{ m p} ight)$
47 ^[b] (CoNiCo)	CH ₂ Cl ₂	+0.27 (98)	+1.13 (90)	-1.35 (73)
	MeCN	+0.14 (63)	+0.94 (58)	-1.20 (62)
31 (NiCo)	CH_2Cl_2	+0.03 (74)	+1.01 ^[c] (-)	-1.83 ^[d,e] (-)
	MeCN	-0.01 (70)	+0.90 (67)	-1.68 (77 ^[f])

^[a] Измерено при скорости сканирования 0.1 В с⁻¹. ^[b] Измерено при 253 К. ^[c] Значение потенциала для необратимого процесса. ^[d] Данные квадратноволновой вольтамперометрии. ^[e] Почти перекрывается с окислительновосстановительными процессами растворителя. ^[f] Измерено при скорости сканирования 0.5 В с⁻¹.

Рис. 59. Циклические вольтамперограммы: (a) раствор **47** в CH₂Cl₂ (1.3 × 10^{-3} моль дм⁻³), T = 253 K; (b) насыщенный раствор **47** в MeCN, T = 293 K; (c) раствор **31** в MeCN (0.7×10^{-3} моль дм⁻³), T = 293 K. Золотой электрод; поддерживающий электролит (a) [NBu₄]PF₆ (0.2 моль дм⁻³), (b) [NEt₄]PF₆ (0.1 моль дм⁻³), (c) [NEt₄]PF₆ (0.1 моль дм⁻³); скорость сканирования 0.2 B c⁻¹.

В целом, четырехпалубный CoNiCo комплекс 47 способен претерпевать один процесс одноэлектронного восстановления и два процесса одноэлектронного окисления как в CH₂Cl₂, так и в MeCN. Все наблюдаемые процессы обратимы в шкале времени циклической вольтамперометрии; отношение катодного и анодного токов i_{pa}/i_{pc} постоянно равно 1. Хотя в растворе ацетонитрила электрохимическое поведение трехпалубного комплекса **31** качественно совпадает с поведением **47**, однако все значения потенциалов для **31** сдвинуты в катодную область по сравнению с четырехпалубным комплексом **47**. При использовании в качестве растворителя CH₂Cl₂ второй окислительный процесс для **31** необратим и затруднен процессами абсорбции на поверхности электрода.

ГЛАВА 3 РЕАКЦИОННАЯ СПОСОБНОСТЬ ТРЕХПАЛУБНЫХ КОМПЛЕКСОВ С БОРСОДЕРЖАЩИМИ ЛИГАНДАМИ

3.1 Галогенидные комплексы [СрСо(µ-С₃B₂Me₅)MX₂]₂

3.1.1 Синтез галогенидных комплексов [CpCo(µ-C₃B₂Me₅)MX₂]₂

Ло работы начала настояшей исследований реакционной способности трехпалубных комплексов не проводилось, в некоторых случаях изучались лишь редокс-свойства полученных комплексов. Нам представлялось важным восполнить этот пробел, а также разработать принципиально новый метод синтеза, основанный на превращении одних трехпалубных комплексов в другие. Так, было обнаружено, что действие безводных галогеноводородных кислот HX (X = Cl и Br) в уксусной кислоте на описанные в разделе 2.2.2 комплексы 32,33, содержащие терминальный циклооктадиеновый лиганд, приводит к отщеплению молекулы циклооктадиена и образованию дигалогенидных комплексов [CpCo(µ-C₃B₂Me₅)MX₂]₂ (**50–53**, схема 53).

Схема 53

50-53 Полученные представляют собой комплексы темноокрашенные, практически черные твердые вещества устойчивые на воздухе в течение длительного времени. Из-за их чрезвычайно низкой растворимости в большинстве растворителей (гексан, CH₂Cl₂, ацетон) нам вырастить кристаллы, пригодные не удалось ДЛЯ структурных исследований. Однако на основании правила 18 электронов и аналогии с описанными В литературе циклопентадиенильными комплексами $[Cp*MX_2]_2$ (M = Rh, Ir; X = Cl, Br, I), строение которых было установлено с помощью методарентгеноструктурного анализа, мы предположили, что эти димерное строение. 121,122,123 имеют Это соединения предположение согласуется растворимостью 50-53 с комплексов В сильнокоординирующихся растворителях (MeCN И Me₂SO). Такое объясняется разрушением поведение, по-видимому, галогенидных мостиков с образованием сольватов $CpCo(\mu - C_3B_2Me_5)M(Solv)X_2$.

3.1.2 Катионные трис(галогенидные) комплексы [СрСо(µ C3B2Me5)M(µ-X)3M(µ-C3B2Me5)CoCp]⁺

Оказалось, что реакция галогенидных комплексов **50–53** с TlBF₄ в CH_2Cl_2 приводит к образованию катионов $[CpCo(\mu-C_3B_2Me_5)M(\mu-X)_3M(\mu-C_3B_2Me_5)CoCp]^+$ (**54–57**), содержащих в струтуре три галогенидных мостика (схема 54).

Глава З

Предполагается, что в ходе реакции под действием катиона таллия происходит отрыв одного галогенид-иона (с образованием чрезвычайно плохо растворимого галогенида таллия), дальнейшее отщепление X^- с образованием сольватных комплексов типа [CpCo(μ -C₃B₂Me₅)M(solv)₃]²⁺ в данных условиях не происходит. Образование трис(μ -галогенидных) катионов **54–57** из **50–53** является косвенным доказательством димерного строения последних.

Структуры катионных трис(галогенидных) комплексов [$CpCo(\mu$ - $C_3B_2Me_5$) $M(\mu$ - $X)_3M(\mu$ - $C_3B_2Me_5$)CoCp]⁺

Строение комплексов 54–56 было установлено при использовании метода РСА (рис. 60–62). Трис(μ -галогенидные) катионы [CpCo(μ -C₃B₂Me₅)M(μ -X)₃M(μ -C₃B₂Me₅)CoCp]⁺ (54–56, M = Rh, Ir; X = Cl, Br) состоят из двух сэндвичевых фрагментов [CpCo(μ -C₃B₂Me₅)M], связанных между собой тремя галогенидными мостиками. Плоскости циклических лигандов во всех случаях практически параллельны (наблюдаемые двугранные углы Cp_{Co}/C₃B₂ лежат в интервале 1.5 ÷ 2.2°), а атомы

177

положение приблизительно над занимают центроидами металлов комплексов 54–56 наблюдается Для всех заслоненная лигандов. конформация циклопентадиенильного и С₃В₂-циклов, а Ме-группы отклоняются от плоскости С₃В₂-лиганда в направлении к атому кобальта на 0.02–0.21 Å. Соединения 54 и 55 (M = Rh, Ir; X = Cl) изоморфны. Атомы родия или иридия в комплексах 54–56 имеют псевдооктаэдрическое окружение, в котором C₃B₂-цикл фрагмента [CpCo(µ-C₃B₂Me₅)] занимает три положения, а три галогенидных атома X (X = Cl, Br) дополняют псевдооктаэдрическую геометрию.

В случае хлоридов **54** и **55** длины связей М–Сl (2.427 и 2.444 Å), средний угол М–Cl–M (81 и 79°), а также расстояние между атомами металлов М····M (3.209 и 3.317 Å) близки к аналогичным характеристикам для ранее охарактеризованных циклопентадиенильных производных [CpM(μ -Cl)₃MCp]⁺: М–Cl 2.431 ÷ 2.485 Å и 2.366 ÷ 2.567 Å, М–Cl–M 81 ÷ 83° и 78 ÷ 79°, М···M (3.220 и 3.325 Å).^{124,125,126,127} Для бромида **56** средняя длина связи Rh–Br составляет 2.553 Å, средний угол Rh–Br–Rh 81.94°, а расстояние Rh····Rh 3.327 Å. Необходимо отметить, что комплекс **56** является первым структурно охарактеризованным примером соединения, содержащего фрагмент M(μ -Br)₃M (M = Rh, Ir). Найденные расстояния М····М свидетельствуют об отсутствии прямого взаимодействия металл– металл в комплексах **54–56**.

Для комплексов $[CpCo(\mu-C_3B_2Me_5)M(\mu-X)_3M(\mu-C_3B_2Me_5)CoCp]^+$ (54– 56) два атома галогена X (X = Cl, Br) занимают цис-положение по отношению к атомам бора B1 и B2, в то время как третий атом галогена расположен в транс-положении по отношению к атому C6.

Глава З

Рис. 60. Структура катиона [CpCo(μ -C₃B₂Me₅)Rh(μ -Cl)₃Rh(μ -C₃B₂Me₅)CoCp]⁺ (54) (тепловые эллипсоиды 50%-ной вероятности). Атомы водорода не приводятся. Избранные расстояния (Å): Co1–C1 2.040(8), Co1–C2 2.054(8), Co1–C3 2.030(8), Co1–C4 2.055(8), Co1–C5 2.038(8), Co1–C6 2.057(7), Co1–C7 2.031(7), Co1–C8 2.042(7), Co1–B1 2.121(9), Co1–B2 2.108(8), Rh1–C6 2.137(7), Rh1–C7 2.125(7), Rh1–C8 2.110(7), Rh1–C11 2.450(2), Rh1–C12 2.411(2), Rh1–B1 2.184(8), Rh1–B2 2.188(9), \angle (C₃B₂/Cp(Co)) 1.5(6)°.

Глава З

Рис. 61. Структура катиона [CpCo(μ -C₃B₂Me₅)Ir(μ -Cl)₃Ir(μ -C₃B₂Me₅)CoCp]⁺ (55) (тепловые эллипсоиды 50%-ной вероятности). Атомы водорода не приводятся. Избранные расстояния (Å): Co1–C1 2.047(19), Co1–C2 2.036(18), Co1–C3 2.044(17), Co1–C4 2.046(16), Co1–C5 2.046(17), Co1–C6 2.054(16), Co1–C7 2.080(16), Co1–C8 2.070(16), Co1–B1 2.12(3), Co1–B2 2.11(2), Ir1–C6 2.179(17), Ir1–C7 2.152(16), Ir1–C8 2.119(17), Ir1–Cl1 2.463(4), Ir1–Cl2 2.429(5), Ir1–B1 2.25(2), Ir1–B2 2.19(2), \angle (C₃B₂/Cp(Co)) 2.2(6)°.

Рис. 62. Структура катиона $[CpCo(\mu-C_3B_2Me_5)Rh(\mu-Br)_3Rh(\mu-C_3B_2Me_5)CoCp]^+$ (56) (тепловые эллипсоиды 50%-ной вероятности). Атомы водорода не приводятся. Избранные расстояния (Å): Co1–C1 2.049(9), Co1–C2 2.048(9), Co1–C3 2.040(8), Co1–C4 2.045(8), Co1–C5 2.040(8), Co1–C6 2.072(8), Co1–C7 2.050(8), Co1–C8 2.035(9), Co1–B1 2.089(10), Co1–B2 2.084(11), Rh1–C6 2.146(9), Rh1–C7 2.131(9), Rh1–C8 2.156(8), Rh1–B1 2.163(10), Rh1–B2 2.180(9), Rh1–Br1 2.551(2), Rh1–Br2 2.588(2), Rh1–Br3 2.520(2), \angle (C₃B₂/Cp(Co)) 1.7(6)°.

3.1.3 Взаимодействие галогенидных комплексов [CpCo(µ-C₃B₂Me₅)MX₂]₂ с двухэлектронными лигандами

Нам представлялось, что дигалогенидные комплексы [CpCo(μ -C₃B₂Me₅)MX₂]₂ (M = Rh, Ir; **50–53**) могут быть использованы в качестве синтонов трехпалубных частиц {CpCo(μ -C₃B₂Me₅)M} по аналогиии с циклопентадиенильными комплексами [Cp*MX₂]₂ (M = Rh, Ir; X = Cl, Br, I), для которых в литературе описано большое количество производных.¹²⁸ И действительно, оказалось, что взаимодействие комплексов **50–53** с такими двухэлектронными лигандами, как ДМСО, PPh₃ или CO с высокими выходами приводит к образованию соответствующих аддуктов CpCo(μ -C₃B₂Me₅)M(L)X₂ (**58–67**; схема 55).

			М	Х	L
Co	Co	58 , 91%	Rh	CI	Me ₂ SO
		59 , 90%	Ir	CI	Me ₂ SO
$-B \rightarrow B - / - L \rightarrow$	$-B \rightarrow B \rightarrow B \rightarrow B$	60 ,97%	Rh	Br	Me ₂ SO
M /	M	61 , 96%	Ir	Br	Me ₂ SO
X_2 /2	Kunner	62 , 83%	Rh	CI	PPh_3
2 1	X	63 , 91%	Ir	CI	PPh_3
		64 , 92%	Rh	Br	PPh_3
M X		65 , 86%	lr	Br	PPh_3
50 Rh Cl		66 , 74%	Rh	Br	CO
51 Ir Cl		67 , 75%	Ir	Br	CO
52 Rh Br					
53 Ir Br					

Схема 55

Полученные комплексы представляют собой яркоокрашенные твердые вещества, в течение продолжительного времени устойчивые на воздухе (за исключением комплексов **66** и **67**, которые в течение 1–2 недель за счет медленной обратной реакции – отщепления СО-лигандов –

превращаются в исходные галогениды **52,53**). Данные ИК-спектров для комплексов **66** и **67** согласуются с относительно слабым связыванием карбонильных групп ($v_{CO} = 2056$ и 2054 см⁻¹ для **66** и **67**, соответственно).

Данные ИК-спектроскопии для комплексов **58–61**, содержащих диметилсульфоксидный лиганд, указывают на то, что ДМСО-лиганд координирован с металлом атомом серы ($v_{SO} = 1019 \text{ см}^{-1}$) и находятся в соответствии с данными РСА (см. ниже). Однако в растворе ацетона колебания в районе 1020 см⁻¹ отсутствуют, а вместо этого наблюдается полоса при $v_{SO} = 902 \text{ см}^{-1}$, что, по-видимому, указывает на связывание ДМСО через атом кислорода. Изменение типа координации диметилсульфоксидного лиганда при растворении ранее наблюдалось в случае циклопентадиенильных комплексов [Cp*M(Me₂SO)₃]^{2+.129}

Структуры аддуктов $CpCo(\mu - C_3B_2Me_5)M(L)X_2$

Строение аддуктов $CpCo(\mu-C_3B_2Me_5)M(L)X_2$ (58–65) было дополнительно подтверждено с помощью метода рентгеноструктурного анализа (рис. 63-70). Во всех случаях плоскости циклических лигандов Срсо и С₃В₂ практически параллельны, а атомы металлов занимают положение почти над центроидами колец. В случае комплексов 62-65, содержащих PPh₃-лиганд, характерна заторможенная взаимная ориентация Ср- и С₃В₂Ме₅-циклов. Комплексы 58–61 с диметилсульфоксидным лигандом содержат две независимые молекулы в элементарной ячейке. В случае формы А наблюдается заслоненная конформация лигандов Ср и C₃B₂Me₅, а для формы В – заторможенная. Метильные группы во всех случаях отклоняются от плоскости С₃В₂-цикла по направлению к атому кобальта на 0.02 ÷ 0.21 Å. Соединения 62/63 и 64/65 попарно изоморфны.

Кроме того, все соединения $CpCo(\mu-C_3B_2Me_5)M(Me_2SO)X_2$ (58–61) также изоморфны между собой.

Атомы Rh/Ir в комплексах 58-65 имеют псевдооктаэдрическую конфигурацию, так что C₃B₂-цикл фрагмента CpCo(µ-C₃B₂Me₅) занимает три положения, а оставшиеся три положения занимают два атома галогена (Cl_2/Br_2) И ОДИН двухэлектронный лиганд (ДMCO/PPh₃). Диметилсульфоксид в 58–61 S-координирован с атомом металла, что согласуется с данными ИК-спектроскопии для твердых образцов (см. выше). Длины М-S связей в комплексах 58-61 лежат в интервалах 2.313 ÷ 2.319 Å (M = Rh) и 2.284 ÷ 2.290 Å (M = Ir). Длины связей М-Р в комплексах 62-65 лежат в узком интервале 2.311 ÷ 2.330 Å. Также незначительно отличаются длины M-Cl (2.387 ÷ 2.408 Å) и M-Br (2.497 ÷ 2.534 Å) связей в комплексах 58–65. Наблюдаемые структурные характеристики трифенилфосфиновых аддуктов 62–65 близки К описанным ранее для Cp-производных (C_5Me_5)MCl₂PR₃ (M = Rh, Ir; R = С₆H₅, С₆F₅, ОЕt и др.).^{130,131,132}

Как и в комплексах **32,33**, содержащих циклооктадиеновый лиганд (см. раздел 2.2.2), в структурах аддуктов **58–65** проявляется транс-влияние лигандов. Атомы галогенов (Cl, Br) всегда расположены в трансположении по отношению к атомам C6 и C8 диборолильного лиганда, в то время как двухэлектронный лиганд L (L = Me₂SO, PPh₃) находится в трансположении к связи C7–B1и в цис-положении к атому B2, что сопровождается удлинением связи M–B1 по сравнению со связью M–B2 на 0.030 ÷ 0.090 Å и укорочением связей M–C6 и M–C8 на 0.010 ÷ 0.040 Å по сравнению с M–C7.

Рис. 63. Структура комплекса $CpCo(\mu-C_3B_2Me_5)Rh(ДMCO)Cl_2$ (58) (тепловые эллипсоиды 50%-ной вероятности). Атомы водорода не приводятся. Избранные расстояния (Å): Co1–C1 2.056(5), Co1–C2 2.057(5), Co1–C3 2.051(5), Co1–C4 2.048(5), Co1–C5 2.042(5), Co1–C6 2.066(5), Co1–C7 2.031(5), Co1–C8 2.039(5), Co1–B1 2.101(6), Co1–B2 2.091(7), Rh1–C6 2.174(5), Rh1–C7 2.171(5), Rh1–C8 2.147(5), Rh1–Cl1 2.405(1), Rh1–Cl2 2.403(1), Rh1–S1 2.318(1), Rh1–B1 2.220(6), Rh1–B2 2.214(5), Cl1– Rh1–Cl2 93.26(5)°, Cl1–Rh1–S1 85.04(5)°, Cl2–Rh1–S1 85.63(5)°, \angle (C₃B₂/Cp(Co)) 0.3(6)°.

Рис. 64. Структура комплекса $CpCo(\mu-C_3B_2Me_5)Ir(ДMCO)Cl_2$ (59) (тепловые эллипсоиды 50%-ной вероятности). Атомы водорода не приводятся. Избранные расстояния (Å): Co1–C1 2.047(3), Co1–C2 2.056(3), Co1–C3 2.047(3), Co1–C4 2.048(3), Co1–C5 2.051(3), Co1–C6 2.057(3), Co1–C7 2.027(3), Co1–C8 2.047(3), Co1–B1 2.103(4), Co1–B2 2.094(4), Ir1–C6 2.191(3), Ir1–C7 2.180(3), Ir1–C8 2.146(3), Ir1–C11 2.411(1), Ir1–C12 2.405(1), Ir1–S1 2.289(1), Ir1–B1 2.240(3), Ir1–B2 2.212(3), C11–Ir1–C12 91.42(2)°, C11–Ir1–S1 85.53(3)°, C12–Ir1–S1 85.74(3)°, \angle (C₃B₂/Cp(Co)) 0.2(6)°.

Рис. 65. Структура комплекса $CpCo(\mu-C_3B_2Me_5)Rh(ДMCO)Br_2$ (60) (тепловые эллипсоиды 50%-ной вероятности). Атомы водорода не приводятся. Избранные расстояния (Å): Co1–C1 2.049(3), Co1–C2 2.051(3), Co1–C3 2.046(3), Co1–C4 2.046(3), Co1–C5 2.054(3), Co1–C6 2.058(3), Co1–C7 2.056(2), Co1–C8 2.040(2), Co1–B1 2.094(3), Co1–B2 2.104(3), Rh1–C6 2.183(2), Rh1–C7 2.155(2), Rh1–C8 2.179(2), Rh1–Br1 2.528(1), Rh1–Br2 2.527(1), Rh1–S1 2.319(1), Rh1–B1 2.221(3), Rh1–B2 2.232(3), Br1–Rh1–Br2 93.48(1)°, Br1–Rh1–S1 85.84(2)°, Br2–Rh1–S1 86.72(2)°, \angle (C₃B₂/Cp(Co)) 0.7(5)°.

Рис. 66. Структура комплекса $CpCo(\mu-C_3B_2Me_5)Ir(ДMCO)Br_2$ (61) (тепловые эллипсоиды 50%-ной вероятности). Атомы водорода не приводятся. Избранные расстояния (Å): Co1–C1 2.042(6), Co1–C2 2.050(6), Co1–C3 2.043(6), Co1–C4 2.039(6), Co1–C5 2.045(6), Co1–C6 2.054(5), Co1–C7 2.038(5), Co1–C8 2.054(5), Co1–B1 2.096(6), Co1–B2 2.084(7), Ir1–C6 2.190(5), Ir1–C7 2.182(5), Ir1–C8 2.149(5), Ir1–Br1 2.534(1), Ir1–Br2 2.532(1), Ir1–S1 2.290(1), Ir1–B1 2.228(6), Ir1–B2 2.218(5), Br1–Ir1–Br2 92.04(1)°, Br1–Ir1–S1 86.36(4)°, Br2–Ir1–S1 86.67(4)°, \angle (C₃B₂/Cp(Co)) 0.6(6)°.

Рис. 67. Структура комплекса СрСо(μ -С₃В₂Ме₅)Rh(PPh₃)Cl₂ (62) (тепловые эллипсоиды 50%-ной вероятности). Атомы водорода не приводятся. Избранные расстояния (Å): Co1–C1 2.040(2), Co1–C2 2.048(2), Co1–C3 2.046(2), Co1–C4 2.054(2), Co1–C5 2.045(2), Co1–C6 2.054(2), Co1–C7 2.025(2), Co1–C8 2.045(2), Co1–B1 2.093(2), Co1–B2 2.093(2), Rh1–C6 2.194(2), Rh1–C7 2.224(2), Rh1–C8 2.173(2), Rh1–B1 2.254(2), Rh1–B2 2.224(2), Rh1–C11 2.387(1), Rh1–Cl2 2.399(1), Rh1–P1 2.330(1), Cl1–Rh1–Cl2 93.27(1)°, Cl1–Rh1–P1 91.35(1)°, Cl2–Rh1–P1 84.49(1)°, \angle (C₃B₂/Cp(Co)) 1.0(6)°.

Рис. 68. Структура комплекса СрСо(μ -С₃B₂Me₅)Ir(PPh₃)Cl₂ (63) (тепловые эллипсоиды 50%-ной вероятности). Атомы водорода не приводятся. Избранные расстояния (Å): Co1–C1 2.039(4), Co1–C2 2.043(4), Co1–C3 2.044(4), Co1–C4 2.050(4), Co1–C5 2.039(4), Co1–C6 2.045(3), Co1–C7 2.018(3), Co1–C8 2.038(3), Co1–B1 2.095(4), Co1–B2 2.097(4), Ir1–C6 2.207(3), Ir1–C7 2.231(3), Ir1–C8 2.167(3), Ir1–B1 2.262(4), Ir1–B2 2.211(4), Ir1–C11 2.396(1), Ir1–C12 2.408(1), Ir1–P1 2.317(1), C11–Ir1–C12 91.11(3)°, C11–Ir1–P1 91.81(3)°, C12–Ir1–P1 84.75(3)°, \angle (C₃B₂/Cp(Co)) 1.0(6)°.

Рис. 69. Структура комплекса СрСо(μ -С₃В₂Ме₅)Rh(PPh₃)Br₂ (64) (тепловые эллипсоиды 50%-ной вероятности). Атомы водорода не приводятся. Избранные расстояния (Å): Co1–C1 2.060(2), Co1–C2 2.056(2), Co1–C3 2.062(2), Co1–C4 2.049(2), Co1–C5 2.045(2), Co1–C6 2.064(2), Co1–C7 2.040(2), Co1–C8 2.024(2), Co1–B1 2.128(2), Co1–B2 2.085(2), Rh1–C6 2.231(2), Rh1–C7 2.239(2), Rh1–C8 2.178(2), Rh1–B1 2.284(2), Rh1–B2 2.216(2), Rh1–Br1 2.497(1), Rh1–Br2 2.519(1), Rh1–P1 2.328(1), Br1–Rh1–Br2 91.01(1)°, Br1–Rh1–P1 87.91(1)°, Br2–Rh1–P1 87.12(2)°, \angle (C₃B₂/Cp(Co)) 2.0(6)°.

Рис. 70. Структура комплекса СрСо(μ -С₃В₂Ме₅)Ir(PPh₃)Br₂ (65) (тепловые эллипсоиды 50%-ной вероятности). Атомы водорода не приводятся. Избранные расстояния (Å): Co1–C1 2.054(4), Co1–C2 2.059(4), Co1–C3 2.037(4), Co1–C4 2.034(4), Co1–C5 2.056(4), Co1–C6 2.056(4), Co1–C7 2.030(4), Co1–C8 2.023(4), Co1–B1 2.125(5), Co1–B2 2.078(4), Ir1–C6 2.231(4), Ir1–C7 2.236(4), Ir1–C8 2.171(4), Ir1–B1 2.294(5), Ir1–B2 2.209(4), Ir1–Br1 2.511(1), Ir1–Br2 2.528(1), Ir1–P1 2.311(1), Br1–Ir1–Br2 89.57(2)°, Br1–Ir1–P1 88.57(3)°, Br2–Ir1–P1 87.11(3)°, \angle (C₃B₂/Cp(Co)) 1.7(6)°.

3.1.4 Катионные трехпалубные комплексы

Взаимодействие бромидных комплексов **52,53** с циклопентадиенидом таллия в MeCN позволило синтезировать катионные трехпалубные комплексы **41a** и **42a** с хорошими выходами (схема 56).

Схема 56

Приведенный метод является альтернативой описанному ранее (см. раздел 2.3) и может представлять интерес для получения производных комплексов 41a,42a, содержащих заместители в Ср-кольце при атомах Rh или Ir. По-видимому, вначале реакции происходит разрушение димерной структуры соединений 52 и 53 с образованием ацетонитрильных аддуктов $CpCo(\mu-C_3B_2Me_5)M(MeCN)Br_2$, которые затем реагируют с TlCp. Это согласуется с наблюдением, что в случае нерастворимого в обычных 52 лобавление растворителях черного комплекса такого координирующегося растворителя, как MeCN, приводит к медленному появлению зеленого окрашивания. Следует отметить, что темно-зеленый цвет является характерным для большинства полученных в настоящей работе комплексов CpCo(μ -C₃B₂Me₅)Rh(L)Br₂.

3.1.5 Дикатионные трехпалубные комплексы

Оказалось. что взаимодействии бромидов $[CpCo(\mu$ при $C_{3}B_{2}Me_{5}MBr_{2}]_{2}$ (52,53; M = Rh, Ir) с AgBF₄ в MeCN образуются устойчивые дикатионные трехпалубные $[CpCo(\mu$ комплексы $C_{3}B_{2}Me_{5})M(MeCN)_{3}]^{2+}$ (68,69), содержащие координированные ацетонитрильные лиганды. Проведение аналогичной реакции бромидов 52, 53 с AgBF₄ в MeNO₂ с последующим добавлением арена с высокими образованию трехпалубных выходами приводит К дикатионных $[CpCo(\mu$ комплексов c терминальными ареновыми лигандами $C_{3}B_{2}Me_{5}M(arene)$ ²⁺ (**70,71**; cxema 57).

Схема 57

Основываясь на аналогии с циклопентадиенильными комплексами,¹²⁸ мы предполагаем, что в начале в результате отрыва бромид-ионов от **52** и **53** образуются трис-сольватные комплексы [CpCo(μ -C₃B₂Me₅)M(MeNO₂)₃]²⁺, после чего координированный нитрометан вытесняется ареном.

Тетрафторбораты дикатионов **70,71** представляют собой темнокрасные твердые вещества, устойчивые на воздухе. Они хорошо растворяются только в сильнополярных органических растворителях, таких как ацетон и нитрометан.

Из литературы известно, что координация с атомом переходного металла характеризуется сильнопольным смещением сигналов кольцевых протонов аренового лиганда (CpMn(C₆H₆): $\delta = 4.50 \text{ м.д.})^{133}$. Однако наличие положительного заряда в комплексе оказывает противоположный эффект ([CpFe(C₆H₆)]⁺: $\delta = 6.49 \text{ м.д.}$).¹³⁴ Более того, в случае дикатионных комплексов [CpM(C₆H₆)]²⁺ (M = Rh, Ir) влияние положительного заряда в комплексе перекрывает влияние эффекта координации (7.71 и 7.69 м.д., соответственно).¹³⁵ В случае комплексов **70,71** сигналы кольцевых протонов ареновых лигандов в спектрах ЯМР ¹Н лишь немного смещены в слабое поле относительно сигналов для свободного арена. Например, для бензольных комплексов **70a** и **71a** были зафиксированы значения $\delta = 7.30$ и 7.38 м.д., соответственно, в то время как для свободного C₆H₆ $\delta = 7.28 \text{ м.д.}$. Вероятно, такое небольшое смещение положения сигнала по сравнению с комплексами [CpM(C₆H₆)]²⁺ (M = Rh, Ir) можно отнести за счет более высокой делокализации положительного заряда в трехпалубных системах.

Сигналы атомов бора диборолильного лиганда в спектрах ЯМР ¹¹В комплексов **68–71** наблюдаются в интервале 18.9 ÷ 25.8 м.д. для Rhсодержащих комплексов и в интервале 11.1 ÷ 16.6 м.д. для Ir-содержащих комплексов.

Структуры дикатионных трехпалубных комплексов [CpCo(µ-C₃B₂Me₅)M(arene)]²⁺

Дополнительное подтверждение строения дикатионных трехпалубных комплексов **70а–с**, **71b** и **71c** (в виде их солей с BF₄-анионом) было получено с помощью метода рентгеноструктурного анализа (рис. 71–75, табл. 25). Интересно отметить, что комплексы родия и иридия, содержащие один и тот же ареновый лиганд, **70b**(BF₄)₂/**71b**(BF₄)₂ и **70c**(BF₄)₂/**71c**(BF₄)₂, попарно изоморфны.

Дикатионы **70b,с** и **71b,с** образованы тремя циклическими лигандами, между которыми располагаются два атома металла. Плоскости циклических лигандов практически параллельны (величины двугранных углов C_3B_2/C_p лежат в интервале $0.4 \div 3.8^\circ$, средн. 1.7° ; для C_3B_2/C_6 $0.6 \div 2.6^\circ$, средн. 1.6°), атомы металлов располагаются практически над центроидами колец. Взаимная ориентация Ср и C_3B_2 колец во всех случаях близка к заслоненной. Цикл C_3B_2 , как правило, немного изогнут вдоль оси В····В ($0.0 \div 2.0^\circ$, средн. 0.6°), так что атом С6 незначительно отклонен в сторону атома Со.

Как видно из табл. 25, расстояния Со…С₃В₂ в родий-содержащих дикатионах **70b**, с значительно длиннее (~ 0.02 Å), чем соответствующие расстояния в иридий-содержащих дикатионах **71b,c**. В то же время расстояния $Rh \cdots C_3 B_2$ в **70b,с** короче (~ 0.02 Å), чем аналогичные расстояния Ir…C₃B₂ в **71b,с**. Это можно объяснить более сильным взаимодействием C₃B₂-цикла с атомом Ir (по сранению с Rh) и, как следствие, более слабым взаимодействием с атомом Со (транс-влияние). 71b/71c Попарное сравнение родственных дикатионов 70b/70c И (содержащих В качестве ареновых лигандов C_6Me_6 , дурол ИЛИ соответственно) показывает, что увеличение числа метильных групп в ареновом лиганде приводит к заметному удлинению расстояний $M \cdots C_3 B_2$, в то время как расстояния $M \cdots$ арен изменяются незначительно.

Таблица 25. Расстояния от атомов металлов до плоскостей лигандов в катионах 70а-с, 71b, с (Å).

	70a	70b	70c	71b	71c
М	Rh	Rh	Rh	Ir	Ir
arene	C ₆ H ₆	$1,2,4,5-C_6H_2Me_6$	C ₆ Me ₆	$1,2,4,5-C_6H_2Me_6$	C ₆ Me ₆
Со…Ср	1.646	1.640	1.642	1.650	1.664
$Co\cdots C_3B_2$	1.614	1.583	1.582	1.561	1.560
$M \cdots C_3 B_2$	1.657	1.707	1.732	1.727	1.749
M… arene	1.774	1.776	1.771	1.776	1.781

Рис. 71. Структура катиона [CpCo(μ -C₃B₂Me₅)RhC₆H₆]²⁺ (70a) (тепловые эллипсоиды 30%-ной вероятности). Избранные расстояния (Å): Co1–C1 2.046(5), Co1–C2 2.026(7), Co1–C3 2.022(10), Co1–C4 2.06(3), Co1–C5 2.066(11), Co1–B1 2.035(13), Rh1–C4 2.130(14), Rh1–C5 2.144(12), Rh1–C9 2.263(5), Rh1–C10 2.249(5), Rh1–C11 2.283(2), Rh1–B1 2.109(13), \angle (C₃B₂/Cp(Co)) 3.2(6)°, \angle (C₃B₂/Cp(Rh)) 2.6(6)°

Рис. 72. Структура катиона [CpCo(μ -C₃B₂Me₅)Rh(1,2,4,5-C₆Me₄H₂]²⁺ (70b) (тепловые эллипсоиды 30%-ной вероятности). Атомы водорода не приводятся. Избранные расстояния (Å): Co1–C1 2.028(10), Co1–C2 2.058(11), Co1–C3 2.045(10), Co1–C4 2.041(2), Co1–C5 2.057(11), Co1–C6 2.077(10), Co1–C7 2.024(9), Co1–C8 2.067(11), Co1–B1 2.103(10), Co1–B2 2.073(10), Rh1–C6 2.152(11), Rh1–C7 2.154(9), Rh1–C8 2.193(11), Rh1–C14 2.288(10), Rh1–C15 2.263(9), Rh1–C16 2.222(10), Rh1–C17 2.307(9), Rh1–C18 2.282(8), Rh1–C19 2.267(10), Rh1–B1 2.189(10), Rh1–B2 2.140(10), \angle (C₃B₂/Cp(Co)) 1.7(6)°, \angle C₃B₂/C₆(Rh) 1.0(6)°

Рис. 73. Структура катиона [CpCo(μ -C₃B₂Me₅)RhC₆Me₆]²⁺ (70с) (тепловые эллипсоиды 50%-ной вероятности). Атомы водорода не приводятся. Избранные расстояния (Å): Co1–C1 2.00(2), Co1–C2 2.06(2), Co1–C3 2.01(2), Co1–C4 2.04(2), Co1–C5 2.05(2), Co1–C6 2.034(13), Co1–C7 2.081(17), Co1–C8 2.019(14), Co1–B1 2.132(17), Co1–B2 2.102(14), Rh1–C6 2.157(11), Rh1–C7 2.168(15), Rh1–C8 2.171(15), Rh1–C14 2.276(11), Rh1–C15 2.302(15), Rh1–C16 2.255(16), Rh1–C17 2.228(12), Rh1–C18 2.281(15), Rh1–C19 2.271(14), Rh1–B1 2.230(14), Rh1–B2 2.223(16), \angle (C₃B₂/Cp(Co)) 0.9(6)°, \angle C₃B₂/C₆(Rh) 0.6(6)°

Рис. 74. Структура катиона [CpCo(μ -C₃B₂Me₅)Ir(1,2,4,5-C₆Me₄H₂]²⁺ (71b) (тепловые эллипсоиды 30%-ной вероятности). Атомы водорода не приводятся. Избранные расстояния (Å): Co1–C1 2.048(13), Co1–C2 2.034(14), Co1–C3 2.066(13), Co1–C4 2.050(16), Co1–C5 2.033(14), Co1–C6 2.089(12), Co1–C7 1.999(11), Co1–C8 2.032(15), Co1–B1 2.111(15), Co1–B2 2.058(12), Ir1–C6 2.157(14), Ir1–C7 2.194(12), Ir1–C8 2.242(13), Ir1–C14 2.320(11), Ir1–C15 2.286(11), Ir1–C16 2.203(12), Ir1–C17 2.291(12), Ir1–C18 2.285(11), Ir1–C19 2.261(11), Ir1–B1 2.111(15), Ir1–B2 2.156(14), \angle (C₃B₂/Cp(Co)) 3.8(6)°, \angle (C₃B₂/C₆(Ir)) 1.1(6)°

Рис. 75. Структура катиона [CpCo(μ -C₃B₂Me₅)IrC₆Me₆]²⁺ (71c) (тепловые эллипсоиды 30%-ной вероятности). Атомы водорода не приводятся. Избранные расстояния (Å): Co1–C1 2.066(13), Co1–C2 2.022(12), Co1–C3 2.031(14), Co1–C4 2.081(14), Co1–C5 2.102(13), Co1–C6 2.024(15), Co1–C7 2.003(17), Co1–C8 2.066(16), Co1–B1 2.098(17), Co1–B2 2.104(17), Ir1–C6 2.182(13), Ir1–C7 2.199(14), Ir1–C8 2.166(14), Ir1–C14 2.314(13), Ir1–C15 2.308(13), Ir1–C16 2.288(14), Ir1–C17 2.262(12), Ir1–C18 2.262(13), Ir1–C19 2.265(13), Ir1–B1 2.231(16), Ir1–B2 2.261(17), \angle (C₃B₂/Cp(Co)) 1.6(6)°, \angle (C₃B₂/C₆(Ir)) 1.5(6)°

Электрохимическое поведение дикатионных трехпалубных комплексов $[CpCo(\mu-C_3B_2Me_5)M(arene)]^{2+}$

Электрохимическое поведение дикатионных трехпалубных комплексов **70,71**, содержащих терминальные ареновые лиганды, было изучено с помощью метода ЦВА.

Значения формальных электродных потенциалов для окислительновосстановительных процессов, наблюдаемых в случае этих комплексов, а также некоторых родственных соединений, важных для последующего обсуждения, даны в табл. 26. ЦВА-профили комплексов [**70а–с**]²⁺ (M = Rh) и [**71а–с**]²⁺ (M = Ir) представлены на рис. 76. **Таблица 26**. Формальные электродные потенциалы ($E^{\circ'}$, B, относительно НКЭ), разница между анодным и катодным пиками ($\Delta E_{\rm p}$, мВ), а также разделение $\Delta E_{\rm II-I}$ (B) для окислительно-восстановительных процессов, проявляемых комплексами **70,71** в пропиленкарбонате.^[a]

Komulekc (M(arene))	Bo	Δ.Ε		
	$E^{\circ}{}^{\prime}{}_{2+/+}(\Delta E_{\mathrm{p}})$	$E^{\circ}'_{+/0} (\Delta E_{\rm p})$	$E^{\circ}'_{0/-}(\Delta E_{\rm p})$	
$[70a]^{2+}$ (Rh(C ₆ H ₆))	+0.11 (70)	-0.74 (70)	_	0.85
$[70b]^{2+}$ (1,2,4,5-Rh(C ₆ H ₂ Me ₄))	+0.04 (70)	-0.83 (70)	_	0.87
$[70c]^{2+}$ (Rh(C ₆ Me ₆))	0.00 (60)	-0.87 (80)	-1.62 ^[b]	0.87
$[71a]^{2+}$ (Ir(C ₆ H ₆))	-0.15 (70)	-0.86 (80)	-1.61 (70)	0.71
$[\mathbf{71b}]^{2+}$ (Ir(1,2,4,5-C ₆ H ₂ Me ₄))	-0.22 (70)	-1.03 (60)	-1.69 (60)	0.81
$[71c]^{2+}$ (Ir(C ₆ Me ₆))	-0.26 (70)	-1.07 (60)	-1.76 (60)	0.81
$[(C_6H_6)RhCp^*]^{2+[c]}$	-0.42	_[d]	_	—
$[(1,2,4,5-Me_4C_6H_2)RhCp^*]^{2+[c]}$	-0.52	-0.78	_	0.26
$[(\mathrm{Me}_6\mathrm{C}_6)\mathrm{Rh}\mathrm{Cp}^*]^{2+[c]}$	-0.57	-0.77	—	0.20
$[(Me_6C_6)IrCp^*]^{2+[e]}$	$-0.60^{[f]}$	_	—	0

^[a] Измерено при скорости сканирования 0.1 В с⁻¹. ^[b] Значение потенциала для необратимого процесса. ^[c] В ацетоне/[Ви₄N][PF₆] (0.1 моль дм⁻³), из работы [136]. ^[d] Не приводится из-за технических сложностей при измерениях. ^[e] В CH₂Cl₂/[Ви₄N][PF₆] (0.1 моль дм⁻³), из работы [137]. ^[f] Двухэлектронный процесс.

Рис. 76. Циклические вольтамперограммы для комплексов $[70a-c]^{2+}$ (сплошная линия) и $[71a-c]^{2+}$ (прерывистая линия) в растворе пропиленкарбоната: (a) $[70a]^{2+}$ и $[71a]^{2+}$; (b) $[70b]^{2+}$ и $[71b]^{2+}$; (c) $[70c]^{2+}$ и $[71c]^{2+}$. Платиновый электрод; поддерживающий электролит $[NBu_4]PF_6$ (0.2 моль дм⁻³), T = 293 K; скорость сканирования 0.2 B c⁻¹.

Как было показано выше, синтезированные в настящей работе трехпалубные комплексы на основе аниона $[CpCo(1,3-C_3B_2Me_5)]^-$ имеют, как правило, 30 валентных электронов (ВЭ) и склонны к восстановлению до 31 и 32 ВЭ. В то же время их окисление до 29 ВЭ проходит с бо́льшими затруднениями, так что процесс может протекать при высоких анодных потенциалах (например, на границе разряда растворителя) и/или быть необратимым. В соответствии с этими наблюдениями в ряду дикатионных

трехпалубных комплексов 70,71 при относительно невысоких потенциалах наблюдается два восстановительных процесса. Более того, в случае **70c**, комплекса а также иридиевых комплексов 71a–c удается зафиксировать третий восстановительный процесс. В то же время окислительные процессы для всех комплексов В рамках экспериментального окна растворителей определяются нечетко.

Олнако следует отметить, что простое, на первый ВЗГЛЯД, окислительно-восстановительное поведение имеет некоторые особенности, которые могут быть объяснены, только принимая во внимание способность ареновых лигандов в комплексах **70,71** претерпевать η^6/η^4 превращения. Ранее аналогичные процессы наблюдались в сэндвичевых комплексах [(arene)MCp*]²⁺ (M = Rh, Ir) и были детально изучены Гейгером с сотр.^{136,137} Анализ приведенных в табл. 26 данных ЦВА позволяет выделить несколько общих тенденций. (1) Как уже отмечено выше, во всех случаях, кроме комплексов 70а, b, наблюдаются три достаточно хорошо выраженных восстановительных процесса. В случае 70а, b третий восстановительный процесс (химически необратимый) также был зафиксирован, однако недостаточно четко. Следует отметить, что наблюдаемый 70c отчетливо в случае комплекса третий восстановительный процесс также необратим. (2) Наблюдаемые три/два редокс-процесса являются быстрыми процессами электронного обмена и электрохимически необратимы, величины $\Delta E_{\rm p}$ составляют 60 ÷ 80 мВ. (3) Соотношение $i_{\rm pa}/i_{\rm pc}$ несколько меньше единицы (на уровне ~ 0.8-0.9 при скоростях сканирования) для каждого редокс-процесса. Это всех показывает, что химическая обратимость редокс-процессов не полная. Кроме того, сила тока возрастает в ряду $i_{pIII} > i_{pII} > i_{pI}$ при всех скоростях сканирования (I, II и III относятся к первому, второму и третьему восстановительным процессам). (4) Как и ожидалось, метилирование

аренового кольца приводит к сдвигу редокс-потенциала в сторону более отрицательных величин на 18 ÷ 36 мВ/Ме, наибольший катодный сдвиг наблюдается во втором восстановительном процессе для комплексов Ir. В этом случае второй электрон добавляется на орбиталь с большим вкладом фрагмента Ir(arene). Для сравнения, ранее в литературе было отмечено, что для сэндвичевых комплексов $[(arene)MCp^*]^{2+}$ (M = Rh, Ir) средний отрицательный сдвиг при введении метильных групп составляет 28 мВ/Ме.¹³⁶ (5) При переходе от Rh к Ir происходит катодный сдвиг 260 мВ для процесса первого восстановления и катодный сдвиг 120 ÷ 200 мВ для процесса второго восстановления. Отмеченные тенденции косвенно указывают на то, что, несмотря на внешне простую картину, передача электронов сопровождаться медленными должна химическими процессами, вызывающими осложнения. При этом при проведении препаративного электролиза во всех случаях после присоединения первого электрона удается провести комплементарную обратную циклическую вольтамперометрию, что свидетельствует о том, что этот процесс действительно электрохимически обратим. Единственное исключение составляет комплекс 70а. В этом случае проявляется новый необратимый пик при -0.17 В, в то время как величины токов и соотношение пиков несколько меняются. С другой стороны, электролиз, проведенный при E >Е2, так что достигается присоединение второго электрона, выявляет образование целого набора новых пиков сравнимой интенсивности. Обе стадии восстановления используют приблизительно один электрон на молекулу. В качестве примера можно рассмотреть поведение комплекса **71а**. Проведение в этом случае объемного электролиза при $E_{\rm w}$ = -0.5 В приводит к изменению цвета раствора с красного на синий; добавление второго электрона достигается при $E_{\rm w} = -1.0$ В, раствор приобретает темносиний (практически черный) цвет. При этом проявляются три новых обратимых процесса восстановления (при -0.54, -1.42 и -1.81 В) и один процесс окисления (при 0.55 V). необратимый Изменения. индуцированные объемным электролизом 71а, приведены на рис. 77 и особенно использования хорошо видны В случае циклической вольтамперометрии применением С техники деконволюции полупроизводных (рис. 77d).

Рис. 77. Циклические вольтамперограммы для комплекса [71a]²⁺ в пропиленкарбоната: (a) исходный (b) растворе раствор: после исчерпывающего одноэлектронного восстановления ($E_w = -0.5$ B); (с) после исчерпывающего двухэлектронного восстановления ($E_w = -1.0$ B); (d) наложение деконволюции полупроизводных циклических вольтамперограмм (b) (сплошная линия) и (c) (прерывистая линия). Платиновый электрод; поддерживающий электролит [NBu₄]PF₆ (0.2 моль $дм^{-3}$), T = 293 K; скорость сканирования 0.2 B c⁻¹.

Ранее на основе детальных исследований n⁶/n⁴-превращений ареновых лигандов в сэндвичевых комплексах $[Cp*M(arene)]^{2+}$ (M = Rh, Ir; arene = $Me_{6-n}H_nC_6$),^{136,137} Гейгер с сотр. предположили, что этот процесс протекает как согласованный при добавлении второго электрона, а центральный атом металла сохраняет благоприятную 18-е конфигурацию. Таким образом, второй процесс восстановления термодинамически выгоден и, соответственно, его редокс-потенциал менее отрицателен, чем ожидается. Мы попытались объяснить редокс-поведение дикатионных трехпалубных комплексов 70,71, используя сходный механизм. Веским аргументом в пользу такого механизма является то, что разность $\Delta E_{\text{II-I}}$ между первым и вторым процессами восстановления в случае комплексов 70,71 лежит в интервале 0.71 ÷ 0.87 В. Интересно, что в случае родственных комплексов $[CpCo(\mu-C_3B_2Me_5)MCp]^+$ (40–42; M = Co, Rh, Ir) величина $\Delta E_{\text{II-I}}$ составляет практически всегда ≈ 1 B, что типично и для других трехпалубных комплексов этого семейства (см. раздел 2.3). В $[Cp*M(arene)]^{2+}$ случае комплексов сэндвичевых дикатионных наблюдается существенно меньшая разность $\Delta E_{\text{II-I}}$ ($\approx 0.2 \div 0.3$ В для М = Rh и ≈ 0 V для M = Ir),^{136,137} однако это не неожиданно, поскольку в силу биядерной природы трехпалубных комплексов делокализация заряда в них осуществляется более эффективно и выигрыш в стабильности за счет изменения координации $\eta^6 \rightarrow \eta^4$ становится существенно меньшим. Также следует отметить, что для сэндвичевых дикатионных комплексов $[Cp*M(arene)]^{2+}$ наблюдаются высокие значения величин ΔE_p для второго восстановительного процесса, что указывает на медленный электронный обмен, сопровождающийся значительной структурной перестройкой. В случае трехпалубных комплексов **70,71** наблюдаемые величины ΔE_{p} имеют значения, типичные для электрохимически обратимых процессов, поэтому

не ожидается, что процесс η^6/η^4 изменения координации аренового лиганда будет согласованным с переносом электрона; скорее изменение координации должно медленно происходить после переноса электрона. В результате на основе экспериментальных наблюдений на примере комплекса **71a** можно предложить общую схему электрохимических и геомептрических превращений (рис. 78):

Рис. 78. Предполагаемая схема электрохимически генерируемых превращений трехпалубного комплекса **71а**.

Согласно этой схеме электрогенерируемые нейтральные 32-электронные частицы [η⁶-71а]⁰ находятся в равновесии с 30-электронными частицами $[\eta^4-71a]^0$. Это согласуется с довольно высокими величинами ΔE_{II-I} для $[\eta^6-$ **71a**]^{2+/+} и [η⁶-**71a**]^{+/0} по сравнению с аналогичными величинами для сэндвичевых комплексов [Cp*M(arene)]²⁺,^{136,137} и указывает на то, что в случае трехпалубных комплексов **70,71** η^6/η^4 -координированные частицы более близки по энергии. Для комплексов $[Cp*M(arene)]^{2+}$ величины ΔE_{II-I} гораздо меньше и в их случае наблюдался полный переход $\eta^6 \to \eta^4$. Кроме этого, нейтральные частицы [η⁴-71а]⁰ подвергаются серии редокспроцессов и в их случае переход 30е/31е наблюдается при -0.54 В, то есть более отрицательном потенциале, наблюдался при чем ДЛЯ соответствующего перехода 30e/31e в случае дикатионов $[\eta^6-71a]^{2+}$, но при более положительном, чем для редокс-процесса $[\eta^6-71a]^{+/0}$, что и объясняет повышенную силу тока для последнего процесса. Также, основываясь на еще большей силе тока для третьего восстановительного пика для $[\eta^6-71a]^{2+}$, можно предположить, что возможно существование второго равновесия между 33-электронными частицами $[\eta^6-71a]^-$ и 31-электронными частицами $[\eta^4-71a]^-$.

Расчеты электрохимических потенциалов

С помощью метода DFT на основе модели сольватации PCM нами были рассчитаны электродные потенциалы для комплексов **70,71**.^{138,139,140,141,142} В табл. 27 приведены как рассчитанные потенциалы, так и экспериментальные значения. В целом видно, что расчеты удовлетворительно предсказывают потенциалы для первого и второго восстановительных процессов (среднее отклонение от экспериметальных величин составляет 0.14 В, максимальное отклонение достигает 0.22 В). **Таблица 27.** Рассчитанные и экспериментально найденные формальные электродные потенциалы ($E^{\circ'}$, B, относительно НКЭ) для трехпалубных комплексов [CpCo(μ -C₃B₂Me₅)M(arene)]²⁺ в растворе пропиленкарбоната.

Комплекс (M(arene))	$E^{\circ}{}'_{2^{+/+}}$		$E^{\circ}{}'_{+\!/0}$	
	расчет	эксп.	расчет	эксп.
$[70a]^{2+}$ (Rh(C ₆ H ₆))	+0.10	+0.11	-0.93	-0.74
$[70b]^{2+} (Rh(1,2,4,5-C_6H_2Me_4))$	-0.09	+0.04	-1.03	-0.83
$[70c]^{2+}$ (Rh(C ₆ Me ₆))	-0.16	0.00	-1.09	-0.87
$[71a]^{2+}$ (Ir(C ₆ H ₆))	-0.20	-0.15	-0.81	-0.86
$[\mathbf{71b}]^{2+}$ (Ir(1,2,4,5-C ₆ H ₂ Me ₄))	-0.36	-0.22	-0.90	-1.03
$[71c]^{2+}$ (Ir(C ₆ Me ₆))	-0.40	-0.26	-0.97	-1.07

Также расчеты позволили оценить структурные изменения, сопровождающие редокс-процессы. Первый восстановительный процесс приводит к удлинению всех расстояний металл… (циклический лиганд), при этом расстояния до мостикового диборолильного лиганда удлиняются в большей степени, чем расстояния до терминальных колец. Удлинение расстояний М…ring согласуется с антисвязывающим характером орбиталей SOMO восстановленных частиц по отношению к взаимодействию атомов металлов с циклическимими лигандами.

В случае CoRh монокатионов [**70а**–**c**]⁺ вклад атомов Co и Rh в SOMO составляет 26–27% и 29–31%, соответственно, предполагая, что при первом восстановлении электронная плотность добавляется практически в равной степени к каждому из металлов. Однако для CoIr аналогов [**71а**–**c**]⁺ вклад атома Co в SOMO (36–38%) значительно больше, чем атома Ir (16–

19%), показывая, что в этом случае восстановление в основном цетрировано по атому кобальта. Аналогичные выводы можно сделать при анализе орбиталей LUMO для дикатионов.

 $\eta^6 \rightarrow \eta^4$ шестичленного кольца Изменение связанности свидетельствует о том, что второй процесс восстановления в обоих случаях является родий- или иридий-центрированным.¹⁴³ Действительно, как показали расчеты, синглетная форма с η⁴-координированным ареновым лигандом заметно более стабильна, чем триплетная с η^6 -ареном (на 4.5 ÷ 5.5 ккал мол⁻¹ для комплексов Rh [**70а-с**]⁰ и на 15.3 ÷ 16.2 ккал мол⁻¹ для комплексов Ir $[71a-c]^0$) в соответствии с большей предпочтительностью 30-электронной конфигурации для трехпалубных комплексов. Также видно, что в случае Ir-содержащих комплексов стабилизация η⁴координации по сравнению с η⁶-координацией арена существенно больше по сравнению с Rh-комплексами. Аналогичная тенденция на основе электрохимического исследования ранее была отмечена для сэндвичевых аренсодержащих комплексов $[Cp*M(arene)]^0$ (M = Rh and Ir).¹³⁷

Введение метильных групп в ареновый лиганд также стабилизирует η⁴-координацию. Интересно, что стабилизация в случае содержащих дурол [**70b**]⁰ [**71b**]⁰ комплексов and выше сравнению по С гексаметилбензольными аналогами, что можно объяснить стерическим отталкиванием, вызванным 1,4-метильными группами В η^4 координированной с металлом «диеновой» части.

3.1.6 Трехпалубные комплексы с терминальными карборановыми лигандами

Нами было показано, что реакция бромидов **52** и **53** с дикарболлидом таллия Tl₂[7,8-C₂B₉H₁₁] в MeCN позволяет с высокими выходами

синтезировать нейтральные трехпалубные комплексы $CpCo(\mu-C_3B_2Me_5)M(7,8-C_2B_9H_{11})$ (72,73; M = Rh, Ir), содержащие терминальные карборановые лиганды (схема 58).

Схема 58

Аналогичным образом, при взаимодействии бромидов **52** и **53** с таллиевым производным моноанионного карборанового лиганда [(9-SMe₂-7,8-C₂B₉H₁₀)]⁻ с высокими выходами были получены катионные трехпалубные комплексы [CpCo(μ -C₃B₂Me₅)M(9-SMe₂-7,8-C₂B₉H₁₀)]⁺ (**74,75**; M = Rh, Ir), выделенные в виде солей с анионом PF₆⁻ (схема 59).

Синтезированные комплексы 72, 73, 74PF₆ и 75PF₆ представляют собой яркоокрашенные твердые вещества, стабильные на воздухе. Они хорошо растворяются в полярных органических растворителях, таких как CH₂Cl₂ и ацетон.

В спектрах ЯМР ¹Н карборановые СН-протоны проявляются в виде широкого синглета при $\delta = 3.18$ (72) или 3.73 м.д. (73), а для комплексов 74РF₆ и 75РF₆ с несимметрично замещенным карборановым лигандом наблюдаются в виде двух синглетов в интервале $3.81 \div 4.80$ м.д. В спектрах ЯМР ¹¹В{¹H} наблюдается набор сигналов карборанового каркаса, имеющих суммарную интегральную интенсивность 9, лежащих в интервале $\delta -23.10 \div 3.92$ м.д., а также слабопольный сигнал, имеющий интегральную интенсивность 2, соответствующий двум атомам бора диборолильного лиганда (δ 14.46 и 14.70 м.д. для родийсодержащих комплексов 76 и 78РF₆ и 9.46 и 10.00 м.д. для иридийсодержащих комплексов 77 и 79РF₆, соответственно).

Структуры трехпалубных комплексов с терминальными карборановыми лигандами

Строение трехпалубных комплексов 72, 74PF₆ и 75PF₆ было дополнительно подтверждено с помощью метода PCA (рис. 79–81, табл. 28). Следует отметить, что комплексы 74PF₆/75PF₆ изоморфны. Во всех комплексах между двумя циклическими лигандами, а также пентагональной гранью карборанового лиганда расположены два атома металла. Плоскости циклических лигандов и пентагональной грани карборанового лиганда близки к параллельности (величины двугранных углов C₃B₂/Cp лежат в интервале 2.1 \div 3.1°, средн. 2.5°; C₃B₂/C₂B₃ 5.0 \div 7.1°, средн. 6.3°), атомы металлов располагаются практически над центроидами колец. Расстояния от атома кобальта до плоскостей C₅- и C₃B₂-циклов в комплексах **72**, **74**PF₆ и **75**PF₆ сходны с аналогичными расстояниями в других трехпалубных комплексах (см. разделы 2.2, 2.3, 2.4, 3.1.2, 3.1.3, 3.1.5 и др.). Расстояния от атома Rh до плоскости C₂B₃ в карборановом лиганде в **72** (1.595 Å) и **74**PF₆ (1.608 Å) отличаются незначительно, хотя в последнем случае в карборановом лиганде присутствует объемная Me₂S-группа. Интересно отметить, что введение Me₂S-группы в карборановый каркас в гораздо большей степени влияет на увеличение расстояния от атома Rh до C₃B₂-плоскости диборолильного лиганда (**72** 1.754 Å, **74**PF₆ 1.780 Å).

Таблица 28. Расстояния от атомов металлов до плоскости лигандов и углы между плоскостями в комплексе 72 и катионах 74 и 75 (Å и °).

	76	78	79
Со…Ср	1.649	1.665	1.657
$Co\cdots C_3B_2$	1.573	1.564	1.558
$M \cdots C_3 B_2$	1.754	1.780	1.781
$M \cdots C_2 B_3$	1.595	1.608	1.595
Cp/C ₃ B ₂	2.2	3.1	2.4
$C_{3}B_{2}/C_{2}B_{3}$	6.9	7.1	6.8

Рис. 79. Структура комплекса СрСо(μ -С₃B₂Me₅)Rh(7,8-С₂B₉H₁₁) (72) (тепловые эллипсоиды 50%-ной вероятности). Атомы водорода не приводятся. Избранные расстояния (Å): Co1–C1 2.034(7), Co1–C2 2.041(7), Co1–C3 2.040(7), Co1–C4 2.028(7), Co1–C5 2.043(7), Co1–C6 2.047(6), Co1–C7 2.035(6), Co1–C8 2.050(6), Co1–B1 2.083(7), Co1–B2 2.087(8), Rh1–C6 2.168(7), Rh1–C7 2.202(6), Rh1–C8 2.223(6), Rh1–C14 2.171(7), Rh1–C15 2.149(7), Rh1–B1 2.193(7), Rh1–B2 2.228(7), Rh1–B3 2.175(7), Rh1–B4 2.199(7), Rh1–B5 2.171(7), \angle (C₃B₂/Cp(Co)) 2.1(6)°, \angle (C₃B₂/C₂B₃(Rh) 5.0(6)°

Глава З

Рис. 80. Структура катиона [CpCo(μ -C₃B₂Me₅)Rh(9-SMe₂-7,8-C₂B₉H₁₀)]⁺ (74) (тепловые эллипсоиды 30%-ной вероятности). Атомы водорода не приводятся. Избранные расстояния (Å): Co1–C1 2.075(13), Co1–C2 2.053(11), Co1–C3 2.032(10), Co1–C4 2.033(10), Co1–C5 2.035(10), Co1–C6 2.033(8), Co1–C7 2.031(9), Co1–C8 2.025(7), Co1–B1 2.104(11), Co1–B2 2.073(9), Rh1–C6 2.195(7), Rh1–C7 2.223(8), Rh1–C8 2.209(8), Rh1–C14 2.172(8), Rh1–C15 2.158(8), Rh1–B1 2.241(10), Rh1–B2 2.244(9), Rh1–B3 2.177(9), Rh1–B4 2.215(9), Rh1–B5 2.211(8), \angle (C₃B₂/Cp(Co)) 3.1(6)°, \angle C₃B₂/C₂B₃(Rh) 7.1(6)°

Рис. 81. Структура катиона [CpCo(μ -C₃B₂Me₅)Ir(9-SMe₂-7,8-C₂B₉H₁₀)]⁺ (75) (тепловые эллипсоиды 30%-ной вероятности). Атомы водорода не приводятся. Избранные расстояния (Å): Co1–C1 2.050(9), Co1–C2 2.042(8), Co1–C3 2.035(8), Co1–C4 2.029(8), Co1–C5 2.018(8), Co1–C6 2.028(7), Co1–C7 2.024(7), Co1–C8 2.023(7), Co1–B1 2.087(9), Co1–B2 2.068(8), Ir1–C6 2.180(7), Ir1–C7 2.226(7), Ir1–C8 2.199(7), Ir1–C14 2.168(7), Ir1–C15 2.157(7), Ir1–B1 2.262(9), Ir1–B2 2.235(8), Ir1–B3 2.194(8), Ir1–B4 2.216(8), Ir1–B5 2.199(8), \angle (C₃B₂/Cp(Co)) 2.4(6)°, \angle C₃B₂/C₂B₃(Ir) 6.8(6)°

Электрохимическое поведение трехпалубных комплексов с терминальными карборановыми лигандами

Электрохимическое поведение трехпалубных комплексов 72–75, содержащих терминальный карборановый лиганд, было изучено с помощью циклической вольтамперометрии. Значения формальных электродных потенциалов для окислительно-восстановительных процессов приведены в табл. 29.

Оказалось, что нейтральные трехпалубные комплексы 72, 73 способны претерпевать два одноэлектронных восстановительных процесса и один одноэлектронный окислительный процесс. При этом все наблюдаемые процессы несут признаки обратимости в шкале времени циклической вольтамперометрии. Катионные комплексы 74, 75 ведут себя сходным образом, однако в их случае процесс 2-го восстановления необратим.

Таблица 29. Формальные электродные потенциалы (В, относительно НКЭ) и разница между анодным и катодным пиками (ΔE_p , мВ) для окислительно-восстановительных процессов комплексов **72–75** в CH₂Cl₂ и MeCN.^[a]

Комплекс		Окисление	Восстановление	
	Растворитель			
(M)	1	$E^{\circ}{}_{\mathrm{Ox}}(\Delta E_{\mathrm{p}})$	$E^{\circ'}_{\text{Red I}}(\Delta E_{\text{p}})$	$E^{\circ}'_{\text{Red II}}(\Delta E_{\text{p}})$
72 (Rh)	CH_2Cl_2	$+1.63 (125^{[b]})$	-1.01 (62)	-1.92 (89 ^[b])
	MeCN	$+1.63(121^{[b]})$	-0.94 (77)	-1.80 (70)
73 (Ir)	CH_2Cl_2	+1.57 (77)	-1.05 (80)	-2.03 ^[c] (-)
	MeCN	+1.53 (60)	-1.01 (67)	-1.94 (58)
[74] ⁺ (Rh)	CH_2Cl_2	—	-0.60 (74)	$-1.52^{[e]}(145^{[d]})$
	MeCN	+1.90 ^[c] (-)	-0.61 (72)	-1.41 ^[e] (-)
[75] ⁺ (Ir)	CH_2Cl_2	_	-0.79 (68)	$-1.68^{[e]} (198^{[e]})$
	MeCN	+1.85 (105 ^[f])	-0.73 (62)	-1.43 ^[g] (-)

^[a] Измерено при скорости сканирования 0.1 В с⁻¹. ^[b] Измерено при скорости сканирования 2.00 В с⁻¹. ^[c] Данные квадратно-волновой вольтамперометрии. ^[d] Измерено при скорости сканирования 5.12 В с⁻¹. ^[e] Измерено при скорости сканирования 20.48 В с⁻¹. ^[f] Измерено при скорости сканирования 0.5 В с⁻¹. ^[g] Значение для необратимого процесса.

Следует отметить, что в общих чертах электрохимическое поведение комплексов 72–75 с карборановым лигандом сходно с поведением Сраналогов [CpCo(C₃B₂Me₅)MC₅R₅]⁺ (40–42, см. раздел 2.3, табл. 20). На рис. 82 для сопоставления приведены ЦВА-профили для иридийсодержащих комплексов [CpCo(C₃B₂Me₅)IrCp]⁺ (42a), 73 и 75 в растворе MeCN, из которых видно, что в сравнении с катионными комплексами 42a и 75 нейтральный комплекс 73 легче окисляется и труднее восстанавливается.

Глава З

Рис 82. Циклические вольтамперограммы для комплексов $[42a]^+$, 73 и $[75]^+$ в растворе MeCN: (a) раствор $[42a]^+$ (0.9 × 10⁻³ моль дм⁻³); (b) раствор 73 (0.5 × 10⁻³ моль дм⁻³); (c) раствор $[75]^+$ (0.7 × 10⁻³ моль дм⁻³). Золотой электрод; поддерживающий электролит [NEt₄]PF₆ (0.1 моль дм⁻³); скорость сканирования: (a, b) 0.2 B c⁻¹; (c) 0.5 B c⁻¹.

3.2 Стабилизация α-карбениевого центра

3.2.1 Трехпалубный комплекс [CpCo(μ-C₃B₂Me₅)Ru(C₅Me₄CH₂)]⁺ со стабилизированным α-карбениевым центром

Известно, что металлоцены подгруппы железа способны эффективно стабилизировать α-карбкатионный центр. Нам представлялось интересным исследовать возможность подобной стабилизации в случае трехпалубных комплексов. Ранее в литературе было показано, что при действии $[Ph_3C]^+$ на RuCp₂* происходит отрыв гидридного водорода H⁻ с образованием катиона $[Cp*RuC_5Me_4CH_2]^+$.⁸⁵ В результате аналогичной реакции трехпалубного комплекса CpCo(μ -C₃B₂Me₅)RuCp* (**29b**, см. раздел 2.2.1) с тритил-катионом мы с высоким выходом синтезировали катионный комплекс $[CpCo(\mu-C_3B_2Me_5)RuC_5Me_4CH_2]^+$ (**76**; схема 60).

Схема 60

Полученный продукт $76PF_6$ представляет собой красное твердое соединение, устойчивое на воздухе в твердом виде в течение длительного времени (несколько месяцев). Сигнал CH₂-группы в спектре ЯМР ¹Н проявляется в области метиленовых протонов при 4.55 м.д. и является удобным маркером для наблюдения за ходом взаимодействия комплекса **76** с различными нуклеофилами с помощью спектроскопии ЯМР ¹Н.

Полученное соединение является первым примером стабилизации αкарбениевого центра в трехпалубном комплексе. Для описания связывания в нем могут быть использованы две граничные структуры: **A** (карбениевый ион) или **B** (комплекс с фульвеновым лигандом) (схема 61).

Глава З

Структура трехпалубного комплекса $[CpCo(\mu-C_3B_2Me_5)Ru(C_5Me_4CH_2)]^+$

Строение трехпалубного комплекса 76PF₆ было дополнительно подтверждено с помощью рентгеноструктурного анализа (рис. 83). Циклические C_3B_2 лиганды Cp_{Co} И практически параллельны (соответствующий угол составляет 1.2°), тогда как угол между циклами Ср_{Ru} и С₃В₂ достигает 7.3°. Наблюдаемый угол между плоскостью Ср_{Ru}кольца и вектором связи C=CH₂ (41.7°) несколько больше, а расстояние Ru–CH₂ (2.259 Å) меньше, чем в случае структурно охарактеризованного ранее рутеноценового аналога $[Cp*RuC_5Me_4CH_2]^+$ (40.8° и 2.270 Å, соответственно),¹⁴⁴ что свидетельствует о более сильном взаимодействии между α-карбениевым центром и атомом Ru в случае комплекса 76. Это косвенно указывает на бо́льшую стабилизацию α-карбениевого центра в случае трехпалубного комплекса в сравнении с сэндвичевым комплексом. Заметное укорочение связи C_{Cp}-CH₂ (1.394 Å) по сравнению со связями С_{Ср}-Ме (1.489 ÷ 1.515, средн. 1.503 Å), указывает на ее двоесвязанный характер. Также следует отметить, что в Ср_{Ru}-цикле отчетливо проявляется альтернирование связей: действительно, величины длин связей С15-С16 и С17-С18 (средн. 1.398 Å) существенно меньше по сравнению со связями C14-C15, C14-C18 (средн. 1.460 Å) и C16-C17 (1.425 Å). Совокупность 224

всех этих данных свидетельствует о том, что комплекс **76** может быть описан как комплекс с фульвеновым лигандом типа **B** (см. схему 61).

Рис. **83**. $[CpCo(\mu-C_3B_2Me_5)RuC_5Me_4CH_2]^+$ Структура катиона (76) эллипсоиды 30%-ной вероятности). Атомы водорода, (тепловые за исключением атомов Н19А и Н19В, не приводятся. Избранные расстояния (Å): Co1–C1 2.022(5), Co1–C2 2.026(5), Co1–C3 2.042(5), Co1–C4 2.040(5), Co1-C5 2.052(6), Co1-C6 2.048(4), Co1-C7 2.028(4), Co1-C8 2.023(4), Co1-B1 2.083(5), Co1-B2 2.083(5), Ru1-C6 2.216(4), Ru1-C7 2.218(4), Ru1-C8 2.191(4), Ru1-C14 2.075(5), Ru1-C15 2.176(5), Ru1-C16 2.270(5), Ru1-C17 2.268(5), Ru1-C18 2.156(5), Ru1-C19 2.252(6), Ru1-B1 2.266(5), Ru1-B2 2.231(5), \angle (C₃B₂/Cp(Co)) 1.2(6)°, \angle (C₃B₂/C₅(Ru)) 6.9(6)°

Природа связи в трехпалубном комплексе [$CpCo(\mu$ - $C_3B_2Me_5)Ru(C_5Me_4CH_2)$]⁺

Представлялось важным исследовать природу химической связи и механизм стабилизации α-карбениевого центра в случае трехпалубного комплекса 76. С этой целью были проведены расчеты методом DFT для 76. трехпалубного комплекса его рутеноценового аналога $[Cp*RuC_5Me_4CH_2]^+$ ($[Rc*CH_2]^+$), а также родоначальных комплексов $[CpCo(\mu-C_3B_2H_5)Ru(C_5H_4CH_2)]^+$ (76') μ $[CpRu(C_5H_4CH_2)]^+$ $([RcCH_2]^+).$ Сначала сравним родоначальные комплексы 76' и $[RcCH_2]^+$, структуры которых были оптимизированы с помощью полноэлектронных скалярнорелятивистских расчетов на уровне PBE/L2. В табл. 30 приведены расстояния Ru-C и C-C, а также порядки связей по Майеру (Mayer bond orders, MBO) во фрагменте $Ru(C_5H_4CH_2)$ этих катионов. Как видно, в случае катиона 76' расстояние Ru–CH₂ короче, а MBO выше, чем для $[RcCH_2]^+$, что предполагает более сильное взаимодействие атома металла с α-карбениевым центром в случае 76' и согласуется с данными РСА для метилированных производных 76 и $[Rc^*CH_2]^+$. Интересно, что для обоих родоначальных катионов MBO для связи Ru-CH₂ значительно выше в сравнении с другими Ru–C связями (несмотря на то, что соответствующее расстояние является самым длинным в фрагменте Ru(C₅H₄CH₂)).

Таблица 30. Избранные расстояния Ru–C и C–C (Å),^[a] а также порядки связей по Майеру (в скобках) ^[b] для родоначальных катионов [RcCH₂]⁺ и **76'**.

Связь	76'	$[RcCH_2]^+$
Ru–CH ₂	2.274 (0.63)	2.287 (0.62)
Ru–C _{ipso}	2.078 (0.46)	2.078 (0.47)
Ru–Cα	2.179 (0.59) ^[c]	2.187 (0.56)
Ru–C _β	2.247 (0.48) ^[c]	2.256 (0.47)
C _{ipso} –CH ₂	1.415 (1.20)	1.413 (1.19)
C _{ipso} –C _a	1.465 (1.04) ^[c]	1.465 (1.03)
C_{α} – C_{β}	1.418 (1.19) ^[c]	1.417 (1.21)
C_{β} – C_{β}	1.439 (1.12)	1.440 (1.11)

^[а] На уровне PBE/L2. ^[b] На уровне BP86/def2-TZVPP. ^[с] Средние величины.

Связь С_{ірso}–СH₂ в **76'** и [RcCH₂]⁺ короче, чем другие С–С связи во фрагменте C₅H₄CH₂. Величины MBO для этой связи (1.2) предполагают ее частично кратный характер. Кроме этого, в C_{5(Ru)}-кольце наблюдается альтернирование связей. В частности, связь C_α–C_β является самой короткой (порядок связи 1.2), тогда как связь C_{ipso}–C_α самая длинная (1.0); связь C_β– C_β занимает промежуточное положение (1.1). В обоих комплексах атом C_{CH2} несколько отклонен от плоскости C_{ipso}/H1/H2 (на 0.128 и 0.129 Å, соответственно), что указывает на классическое *π*-связывание с металлом.

Частично кратный характер связей C_{ipso} – CH_2 , C_{α} – C_{β} , и C_{β} – C_{β} также согласуется с формой граничных орбиталей для незамещенного фульвенового фрагмента $C_5H_4CH_2$ с геометрией, которую он имеет в

родоначальном комплексе **76'** (Рис. 84). Действительно, ВЗМО и ВЗМО–1 представляют собой π -орбитали. Эти орбитали ответственны за π донирование C₅H₄CH₂ \rightarrow Ru, тогда как HCMO и HCMO+2 принимают участие в обратном δ-донировании Ru \rightarrow C₅H₄CH₂. Интересно отметить, что как ВЗМО–1, так и HCMO несут значительный вклад за счет рорбитали CH₂-углеродного атома. В целом, эти данные согласуются со связыванием фульвенового типа между C₅H₄CH₂-лигандом и атомом рутения, что соответствует данным рентгеноструктурного анализа для катиона **76**.

Рис. 84. Граничные орбитали для незамещенного фульвенового фрагмента $C_5H_4CH_2$, ответственные за π -донирование (B3MO, B3MO–1) и обратное δ -донирование (HCMO, HCMO+2).

Для того чтобы оценить влияние заместителя на стабильность метильного катиона CH_3^+ нами были рассчитаны энергии стабилизации (ΔE_{stab} , см. табл. 31) для некоторых заместителей (H, Me, Ph, NH₂, NMe₂, CpRuC₅H₄, Cp*RuC₅Me₄, CpCo(μ -C₃B₂H₅)RuC₅H₄, CpCo(μ -C₃B₂Me₅)RuC₅Me₄) в соответствии с уравнением реакции:

$$CH_{3^{+}} + RCH_{3} \rightarrow CH_{4} + RCH_{2^{+}} + \Delta E_{stab}$$

Как видно из табл. 31, стабилизирующий эффект в случае незамещенного рутеноценильного заместителя больше, чем для таких заместителей, как Ph и NR₂ (R = H, Me).

Таблица 31. Энергии стабилизации (ΔE_{stab} , в ккал моль⁻¹) ^[a] и электростатические потенциалы для карбениевого атома углерода (E_{C}).^[b]

Заместитель	$\Delta E_{\rm stab}$	E _C
Н	0	-14.331
CH ₃	50.18	-14.451
Ph	83.24	-14.533
NH ₂	101.70	-14.436
NMe ₂	119.15	-14.494
CpRuC ₅ H ₄	120.70	-14.590
Cp*RuC ₅ Me ₄	139.31	-14.627
$CpCo(\mu-C_3B_2H_5)RuC_5H_4$	130.06	-14.614
$CpCo(\mu-C_3B_2Me_5)RuC_5Me_4$	141.55	-14.636
Ph ₃	126.18	-14.578

^[a] На уровне PBE/L2 с ZPE-коррекцией. ^[b] На уровне PBE/L2//BP86/TZ2P.

Однако он меньше, чем суммарный эффект трех Ph-групп, что объясняет неудачу при попытке получить родоначальный катион [RcCH₂]⁺ путем тритил-катионом.¹⁴⁵ метилрутеноцена с Тем реакции не менее, нонаметилированного стабилизирующее влияние рутеноценильного заместителя заметно превосходит эффект Ph3, что объясняет легкость получения катиона [Rc*CH₂]⁺ путем отрыва гидрида от RuCp*₂ с помощью $[Ph_3C]^+$.85

Интересно, что стабилизирующий эффект родоначального трехпалубного заместителя $CpCo(\mu-C_3B_2H_5)RuC_5H_4$ на 10 ккал моль⁻¹ превосходит подобный эффект для CpRuC₅H₄. Нонаметилирование родоначального трехпалубного заместителя приводит к дополнительной стабилизации (на 12 ккал моль⁻¹), что, однако, меньше, чем в случае рутеноценила (19 ккал моль⁻¹). Однако суммарный стабилизирующий эффект метилированного трехпалубного заместителя $CpCo(\mu C_3B_2Me_5$)Ru C_5Me_4 на 2.5 ккал моль⁻¹ больше по сравнению с Cp*Ru C_5Me_4 . образом Таким можно отметить, что трехпалубный заместитель, настоящей работе, проявляет рекордно используемый в высокий стабилизирующий эффект по отношению к метильному катиону. Это коррелирует с более сильным связыванием Ru–CH₂ в случае катионов 76 и 76' по сравнению с $[Rc*CH_2]^+$ и $[RcCH_2]^+$ (см. выше). В полном соответствии с этими данными электростатический потенциал ЕС для атома углерода CH₂-группы в **76** имеет наиболее отрицательную величину среди всех исследованных заместителей (последняя колонка в табл. 31).

Рис. 85 иллюстрирует НСМО для родоначальных катионов **76'** и $[RcCH_2]^+$. Как видно, коэффициент НСМО при атоме углерода CH₂-группы для трехпалубного комплекса гораздо меньше, чем для моноядерного аналога $[RcCH_2]^+$, что предполагает более низкую электрофильность **76'** по сравнению с $[RcCH_2]^+$. Это вызвано большей делокализацией электронной

плотности в более сложной трехпалубной системе. Эти данные объясняют большую реакционную способность $[Rc*CH_2]^+$ (по сравнению с **76**) по отношению к PhNEt₂ с образованием продукта электрофильного замещения (см. далее).

Рис. 85. НСМО для родоначальных катионов **76'** и [RcCH₂]⁺ (на уровне BP86/def2-TZVPP//PBE/L2).

3.2.2 Реакционная способность трехпалубного комплекса [CpCo(µ-C₃B₂Me₅)Ru(C₅Me₄CH₂)]⁺

Взаимодействие трехпалубного комплекса [CpCo(µ-C₃B₂Me₅)Ru(C₅Me₄CH₂)]⁺ с О- и Р-нуклеофилами

Исследование реакционной способности комплекса **76** показало, что в реакциях с нуклеофильными реагентами он ведет себя как карбениевый ион, образуя соответствующие продукты присоединения нуклеофила к αкарбениевому центру. Так, при реакции **76** с КОН или PPh₃ нами были синтезированы трехпалубные комплексы, содержащие функциональные заместители в боковой цепи: спирт **77** и четвертичная фосфониевая соль **78**, соответственно (схема 62).

Поскольку комплекс **76** имеет красную окраску, а его предшественник, соединение **29b**, а также образующиеся при реакции с нуклеофилами продукты, такие как **77** и **78**, окрашены в синий цвет, то переход окраски оказался удобным визуальным критерием протекания реакций. В случае реакций, представленных на схеме 62, изменение цвета происходило практически мгновенно.

Структура трехпалубного комплекса СрСо(µ-C₃B₂Me₅)Ru(C₅Me₄CH₂OH)

Строение трехпалубного комплекса 77 было дополнительно подтверждено с помощью метода рентгеноструктурного анализа (рис. 86). Плоскости лигандов всех циклических практически параллельны, 1.6° и 1.7°, двугранные углы Cp_{Co}/C₃B₂ и C₃B₂/Cp_{Ru} составляют соответственно. Взаимная ориентация всех пятичленных циклов в 77 практически идеальная заслоненная. Сравнение его структуры co структурой катиона 76 показывает, что в комплексе 77 отсутствует взаимодействие между атомом рутения и метиленовым атомом углерода С19, который отогнут от плоскости Ср_{Ru}-лиганда в направлении от атома рутения на 1°, так что расстояние Ru…C19 составляет 3.277 Å. Какое-либо заметное альтернирование С-С связей внутри (C₅Me₄CH₂OH)-лиганда не наблюдается.

Глава З

Рис. 86. Структура комплекса СрСо(μ -С₃B₂Me₅)RuC₅Me₄CH₂OH (77) (тепловые эллипсоиды 50%-ной вероятности). Атомы водорода, за исключением атома H1O, не приводятся. Избранные расстояния (Å): Co1-C1 2.046(2), Co1-C2 2.056(2), Co1-C3 2.048(2), Co1-C4 2.049(2), Co1-C5 2.051(2), Co1-C6 2.050(2), Co1-C7 2.053(2), Co1-C8 2.036(2), Co1-B1 2.093(2), Co1-B2 2.088(2), Ru1-C6 2.234(2), Ru1-C7 2.220(2), Ru1-C8 2.209(2), Ru1-C14 2.153(2), Ru1-C15 2.168(2), Ru1-C16 2.166(2), Ru1-C17 2.167(2), Ru1-C18 2.164(2), Ru1-B1 2.256(2), Ru1-B2 2.235(2), \angle (C₃B₂/Cp(Co)) 1.6(6)°, \angle (C₃B₂/C₅(Ru)) 1.7(6)°

Взаимодействие трехпалубного комплекса [CpCo(µ-C₃B₂Me₅)Ru(C₅Me₄CH₂)]⁺ с алифатическими аминами

Далее мы исследовали взаимодействие трехпалубного комплекса 76 с алифатическими аминами. Оказалось, что при добавлении к 76 триэтиламина происходит практически мгновенное изменение цвета реакционного раствора с красного на темно-фолетовый и быстрое 79 соли (схема 63), образование аммонийной которая была охарактеризована с помощью спектроскопии ЯМР¹Н. Далее, однако, оказалось, что при стоянии реакционной смеси в ампуле ЯМР около 3 суток происходит трансформация комплекса 79 с образованием с высоким выходом простого эфира 80. При этом темно-фиолетовый цвет раствора меняется на чисто синий.

Схема 63

Поскольку нами был использован безводный триэтиламин, очищенный длительным кипячением и перегонкой над натрием, то мы предполагаем, что продукт 80 образуется в результате взаимодействия 79 с примесью воды, присутствующей в дейтерированном растворителе – ацетоне- d_6 . Следует отметить, представленные 63 ЧТО на схеме превращения не уникальны. Взаимодействие с NEt₃ рутеноценильного аналога $[Rc^*CH_2]^+$ протекает сходным образом и также в итоге приводит к

соответствующему эфиру.¹⁴⁶ Кроме того известно, что четвертичные аммонийные соли с ферроценилметильным заместителем демонстрируют высокую реакционную способность и позволяют получать разнообразные соединения, в том числе и структурные аналоги полученных нами комплексов.¹⁴⁷

Структура комплекса [$CpCo(\mu$ - $C_3B_2Me_5)RuC_5Me_4CH_2O$]₂O

Строение простого эфира **80** была установлено с помощью метода рентгеноструктурного анализа (рис. 87). Основные длины связей, наблюдаемые для комплекса **80** в целом близки величинам, описанным для полученных в настоящей работе и структурно охарактеризованных комплексов **29b** и **77**.

Рис. 87. Структура комплекса [CpCo(µ-C₃B₂Me₅)RuC₅Me₄CH₂O]₂O (**80**) (тепловые эллипсоиды 50%-ной вероятности). Атомы водорода не приводятся. Избранные расстояния (Å): Co1–C1 2.051(3), Co1–C2 2.032(3), Co1–C3 2.024(3), Co1–C4 2.049(3), Co1–C5 2.054(3), Co1–C6 2.042(3),

Co1-C7 2.037(3), Co1-C8 2.032(2), Co1-B1 2.089(3), Co1-B2 2.083(3), Ru1-C6 2.218(2), Ru1-C7 2.209(2), Ru1-C8 2.200(3), Ru1-C14 2.156(2), Ru1-C15 2.175(2), Ru1-C16 2.176(2), Ru1-C17 2.159(2), Ru1-C18 2.162(2), Ru1-B1 2.244(3), Ru1-B2 2.248(3), \angle (C₃B₂/Cp(Co)) 2.3(6)°, \angle (C₃B₂/C₅(Ru)) 2.7(6)°

Взаимодействие трехпалубного комплекса [CpCo(µ-C₃B₂Me₅)Ru(C₅Me₄CH₂)]⁺ с ароматическими аминами

Изучение взаимодействия комплекса **76** с ароматическими аминами, такими как N,N-диэтиланилин и п-толуидин показало, что в этом случае реаакции протекают по механизму электрофильного замещения в ароматическом кольце с селективным образованием соответствующих продуктов. Так, в случае N,N-диэтиланилина электрофильная атака протекает по пара-положению, а в случае п-толуидина, в котором параположение занято, атака идет по орто-положению. В результате этого были с высокими выходами селективно получены комплексы **81** и **82** (схема 64).

Схема 64

В случае синтеза комплекса 81 соотвествующую реакцию проводили при соотношении реагентов 1:1. Очевидно, что высвободившийся при реакции электрофильного замещения протон присоединился к атому азота ароматического заместителя, ЧТО позволило выделить катионное соединение 81. В случае синтеза комплекса 82 мы использовали избыток ароматического амина, который, по-видимому, связывал образующиеся протоны, так что продукт реакции был выделен в виде нейтрального соединения. Комплексы 81, 82 представляют собой твердые вещества синего цвета, устойчивые в течение длительного времени на воздухе. В спектре ЯМР ¹Н комплекса 81 обращает на себя внимание AA'BB'система, относящаяся к ароматическому кольцу. Это является косвенным указанием на образование пара-замещенной ароматической системы. Также нами был проведен сравнительный ЯМР-мониторинг реакций родственных катионов 76 и $[Cp*RuC_5Me_4CH_2]^+$ с N,N-диэтиланилином. Оказалось, что полная конверсия трехпалубного катиона 76 в комплекс 81 протекает за 24 часа, тогда как металлоценовый аналог [Cp*RuC₅Me₄CH₂]⁺ превращается в производное $[Cp*Ru(C_5Me_4CH_2(4-C_6H_4NEt_2H)]^+$ всего за 8 часов. Существенно меньшая скорость реакции в случае катиона 76 свидетельствует о большей стабилизации (и меньшей реакционной способности) α-карбениевого центра В трехпалубном катионе ПО сравнению с металлоценовым аналогом [Cp*RuC₅Me₄CH₂]⁺. Следует отметить, что Несмеянов с сотр. описали аналогичные превращения при взаимодействии ферроценильных аналогов $[CpFeCH(R)Ph]^+$ (R = H, Ph) с диметиланилином.¹⁴⁸

Структуры трехпалубных комплексов [CpCo(μ -C₃B₂Me₅)Ru(C₅Me₄CH₂(4-C₆H₄NEt₂H)]⁺ u (2-CpCo(μ -C₃B₂Me₅)Ru(C₅Me₄CH₂)(1,4-MeC₆H₃NH₂) Строение трехпалубных комплексов **81** и **82** было установлено с помощью метода РСА (рис. 88 и 89).

Рис. 88. Структура катиона [CpCo(μ -C₃B₂Me₅)Ru(C₅Me₄CH₂(4-C₆H₄NEt₂H)]⁺ (81) (тепловые эллипсоиды 50%-ной вероятности). Атомы водорода, за исключением атома H10, не приводятся. Избранные расстояния (Å): Co1–C1 2.035(7), Co1–C2 2.036(7), Co1–C3 2.038(7), Co1–C4 2.041(7), Co1–C5 2.047(7), Co1–C6 2.052(7), Co1–C7 2.038(7), Co1–C8 2.051(7), Co1–B1 2.081(7), Co1–B2 2.074(7), Ru1–C6 2.198(7), Ru1–C7 2.196(6), Ru1–C8 2.209(7), Ru1–C14 2.134(5), Ru1–C15 2.147(5), Ru1–C16 2.169(5), Ru1–C17 2.170(5), Ru1–C18 2.148(5), Ru1–B1 2.230(7), Ru1–B2 2.204(7), \angle (C₃B₂/Cp(Co)) 0.9(6)°, \angle (C₃B₂/C₅(Ru)) 1.7(6)°

Глава З

Рис. 89. Структура комплекса (2-СрСо(μ -С₃В₂Ме₅)Ru(С₅Ме₄СH₂)(1,4-MeC₆H₃NH₂) (82) (тепловые эллипсоиды 50%-ной вероятности). Атомы водорода не приводятся. Избранные расстояния (Å): Co1–C1 2.026(4), Co1–C2 2.040(4), Co1–C3 2.043(4), Co1–C4 2.035(4), Co1–C5 2.025(4), Co1–C6 2.030(4), Co1–C7 2.049(4), Co1–C8 2.045(4), Co1–B1 2.056(4), Co1–B2 2.074(4),Ru1–C14 2.136(4), Ru1–C15 2.148(4), Ru1–C17 2.150(4), Ru1–C16 2.155(4), Ru1–C18 2.143(4), Ru1–C6 2.189(4), Ru1–C7 2.201(4), Ru1–C8 2.206(4), Ru1–B2 2.209(4), Ru1–B1 2.228(4), \angle (C₃B₂/Cp(Co)) 0.5(5)°, \angle (C₃B₂/Cp(Ru)) 0.1(5)°

Восстановление трехпалубного комплекса [$CpCo(\mu$ - $C_3B_2Me_5$) $Ru(C_5Me_4CH_2)$]⁺

Реакция восстановления катиона **76** цинковой пылью в ТГФ привела к образованию «димерного» комплекса **83** (91%), в котором два идентичных трехпалубных фрагмента связаны мостиком CH₂CH₂ (схема 65).

Схема 65

Продукт **83** представляет собой темно-синее твердое вещество устойчивое на воздухе. Побочно образовалось минорное количество комплекса **29b** (4%), который удалось отделить с помощью хроматографии. Можно предположить, что в этой реакции в результате восстановления цинковой пылью промежуточно образуется радикал **76**⁻, который далее сдваивается с образованием продукта **83** (основная реакция) или отрывает атом водорода от молекулы растворителя с образованием **29b** (побочная реакция).

Структура комплекса СрСо(µ-C₃B₂Me₅)Ru(C₅Me₄CH₂CH₂C₅Me₄)Ru(µ-C₃B₂Me₅)CoCp

Строение комплекса **83** было дополнительно подтверждено с помощью метода PCA (рис. 90). Это соединение наряду с описанными выше комплексами **77**, **80–82** можно рассматривать как органические производные трехпалубного комплекса CpCo(μ -C₃B₂Me₅)RuCp* (**29b**), полученного в настоящей работе (см. раздел 2.2.1). Для всех этих соединений плоскости циклических лигандов практически параллельны, соотвествующие двугранные углы лежат в интервале 0° ÷ 2.7°. Наблюдаемые расстояния от атома металла до плоскости лиганда Co···Cp (1.647 ÷ 1.655 Å), Co···C₃B₂ (1.575 ÷ 1.585 Å), Ru···C₃B₂ (1.773 ÷ 1.788 Å) и Ru···C₅ (1.772 ÷ 1.785 Å) очень близки описанным для **29b** (1.654, 1.590, 1.776, and 1.788 Å, соответственно).

90. Рис. Структура CpCo(µкомплекса $C_3B_2Me_5$)Ru($C_5Me_4CH_2CH_2C_5Me_4$)Ru(μ - $C_3B_2Me_5$)CoCp (83) (тепловые эллипсоиды 50%-ной вероятности). Атомы водорода не приводятся. Избранные расстояния (Å): Co1-C1 2.0360(16), Co1-C2 2.0488(16), Co1-C3 2.0512(15), Co1-C4 2.0559(15), Co1-C5 2.0445(16), Co1-C6 2.0589(14), Co1-C7 2.0345(14), Co1-C8 2.0287(14), Co1-B1 2.0922(15), Co1-B2 2.0989(16), Ru1-C14 2.1607(13), Ru1-C15 2.1684(14), Ru1-C16 2.1637(14), Ru1-C17 2.1547(14), Ru1-C18 2.1643(14), Ru1-C6 2.2361(14), Ru1-C7 2.2014(14), Ru1-C8 2.2041(14), Ru1-B1 2.2418(15), Ru1-B2 2.2489(15), \angle (C₃B₂/Cp(Co)) 0.5(5)°, \angle (C₃B₂/Cp(Ru)) 0.1(5)°

ЗАКЛЮЧЕНИЕ

В основе настоящей диссертации лежит единый синтетический подход, основанный на использовании реакций электрофильного стэкинга для синтеза трехпалубных комплексов с пятичленными борсодержащими циклическими лигандами. В результате проведенного исследования впервые продемонстрированы обширные возможности этой методологии. Также диссертационное исследование объединяет общая природа синтезированных соединений.

В 1 главе приведены результаты исследований синтеза трехпалубных комплексов, содержащих циклический лиганд с одним атомом бора – борол. Показано, что используемый в работе подход обладает большим потенциалом и позволяет синтезировать значительное количество целевых объектов различной природы. В то же время обозначены некоторые ограничения этого подхода.

2 глава посвящена исследованию комплексов, содержащих циклический лиганд с двумя атомомами бора – диборолил. Этот раздел описывает широкий ряд самых разнообразных комплексов и представляет собой наиболее объемную часть настоящего исследования. Также в этой главе описан синтез четырехпалубных соединений и их структурная характеризация.

B 3 главе представлены результаты изучения реакционной способности трехпалубных комплексов с борсодержащими лигандами. До начала настоящей работы исследования подобного рода не проводились. Нами был разработан принципиально новый метод синтеза, основанный на использовании трехпалубных В качестве синтонов частиц $\{CpCo(C_3B_2Me_5)M\}$ и заключающийся в превращении одних трехпалубных комплексов в другие. Это позволило еще больше расширить синтетические

244

возможности и получить ряд недоступных другими путями комплексов. Здесь же описан первый пример стабилизации α-карбениевого центра в трехпалубном комплексе. Полученное соединение оказалось удобным для синтеза разнообразных функционально-замещенных производных исходного комплекса.

Для дополнительного подтверждения строения соединений, полученных В ланной работе, широко использовался метол рентеноструктурного анализа. С помощью метода РСА были определены структуры для 61 комплекса, выявлены наблюдаемые в них структурные особенности. Также закономерности И подробно исследовалось электрохимическое поведение синтезированных соединений, которое показало, большинство способно претерпевать что ИЗ них одноэлектронные процессы окисления и восстановления, которые во многих случаях обратимы. При использовании DFT-расчетов была исследована природа химической связи металл–лиганд в синтезированных комплексах.

Для обобщения полученных данных нам представлялось важным качественно оценить влияние, которое оказывает природа циклического πлиганда (в первую очередь, борсодержащего) при координации с переходным металлом, приводящей к образованию сэндвичевого комплекса и последующем переходе к трехпалубному комплексу.

Как известно, ковалентное связывание в сэндвичевых соединениях обычно описывают в терминах прямого π и σ донирования лиганд \rightarrow М и обратного δ донирования М \rightarrow лиганд. Для того, чтобы оценить вклады π , σ , и δ взаимодействий нами с помощью расчетов методом DFT были определены заселенности орбиталей фрагментов по Малликену для серии родственных моноядерных и трехпалубных комплексов кобальта [CpCo(ring)]²⁻ⁿ и [CpCo(ring)CoCp]⁴⁻ⁿ (ring = Cp, C₄BH₅, C₃B₂H₅ и C₂B₃H₅; n

 абсолютная величина заряда 6-шестиэлектронного циклического лиганда: 1, 2, 3, и 4, соответственно; табл. 32).

Таблица 32. Процентные вклады π, σ и δ взаимодействий и порядки связей по Майеру (MBO) для комплексов [CpCo(ring)]²⁻ⁿ (обычный шрифт) ^[a] и [CpCo(ring)CoCp]⁴⁻ⁿ (*курсив*).^[b,c]

ring		MBO			
ing	π	σ	δ		
Cp ⁻	70.3	19.6	10.1	2.83	
	_	_	_	_	
$[C_4BH_5]^{2-}$	76.5	15.7	7.8	2.92	
	56.9 (55.5)	34.6 (34.2)	8.6 (10.3)	4.98	
$[C_3B_2H_5]^{3-}$	80.2	13.0	6.7	2.96	
	58.6 (58.3)	35.1 (34.2)	6.3 (7.4)	5.06	
$[C_2B_3H_5]^{4-}$	84.4	9.0	6.5	3.11	
	69.7 (65.6)	24.9 (27.3)	5.4 (7.1)	5.96	

^[a] При использовании [CoCp]²⁺ и [(ring)]^{n–} в качестве взаимодействующих фрагментов. ^[b] При использовании [CpCo···CoCp]⁴⁺ и [(ring)]^{n–} или двух [CoCp]²⁺ и [(ring)]^{n–} в качестве взаимодействующих фрагментов (в скобках). ^[c] На уровне BP86/def2-TZVPP//BP86/TZ2P.

Сравнение величин порядков связей по Майеру (Mayer bond orders, MBO) показывает, что при увеличении числа атомов бора в цикле связывание Co-ring усиливается как в случае моноядерных, так и в случае трехпалубных комплексов. Кроме того, на основе анализа заселенности орбиталей фрагментов по Малликену видно, что при увеличении числа

атомов бора в пятичленном цикле в случае сэндвичевых соединений $[CpCo(ring)]^{2-n}$ вклад π донирования возрастает, тогда как σ донирование и обратное δ донирование понижаются.

[CpCo(ring)CoCp]^{4–n} В случае трехпалубных комплексов центральный циклический лиганд является двусторонне связанным с двумя атомами металлов, что вынуждает его более эффективно использовать все имеющиеся орбитали. В первую очередь это приводит к взаимодействий, которые усилению тех типов были слабыми В моноядерных комплексах. В соответствии с этой тенденцией, процентный вклад σ донирования возрастает, а степень участия π донирования снижается, хотя последнее по-прежнему играет наиважнейшую роль. Вклад обратного б донирования во всех системах остается практически неизменным.

* * *

Таким образом, можно заключить, что увеличение числа атомов бора в цикле приводит к усилению связывания Co–ring как в моноядерных, так и в трехпалубных комплексах. Кроме того, увеличение числа атомов бора в циклическом π -лиганде в случае сэндвичевых соединений [CpCo(ring)]²⁻ⁿ приводит к повышению вклада π донирования. При переходе к трехпалубным комплексам [CpCo(ring)CoCp]⁴⁻ⁿ его роль несколько снижается, а степень участия σ донирования возрастает, хотя π донирование по-прежнему играет первостепенную роль. Вклад обратного б донирования меняется незначительно.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Все реакции проводили в атмосфере аргона с использованием растворителей. Операции, абсолютных связанные выделением С продуктов, как правило, осуществляли на воздухе. В случаях, когда выделение продуктов необходимо проводить в инертной атмосфере, это оговорено отдельно. Растворители перегоняли в атмосфере аргона над соответствующими осушителями: хлористый метилен (CaH₂), ΤΓΦ (бензофенонкетил натрия), ацетонитрил (CaH₂), гексан (натрий мет.), диэтиловый эфир (бензофенонкетил натрия), нитрометан (CaCl₂). Для регистрирования спектров ЯМР чувствительных к воздуху соединений использовали дейтерированные растворители, перегнанные нал осушителями в атмосфере аргона: CD_2Cl_2 (P_2O_5), $CDCl_3$ (P_2O_5), бензол- d_6 (натрий мет.), CD₃CN (P₂O₅). В тех случаях, когда выделение продуктов необходимо было проводить в инертной атмосфере, носители для хроматографии: SiO₂ (L 100/400) и Al₂O₃ (нейтральный, по Брокману II) выдерживали в вакууме при 180°С (0.01 мм рт. ст.) в течение 18 часов и хранили в атмосфере аргона. Целлюлозу (мелкокристаллическая ЛК) выдерживали в вакууме при комнатной температуре в течение 2 часов и хранили в атмосфере аргона.

Облучение видимым светом проводили в трубке Шленка диаметром 15 мм с помощью ртутной лампы (типа ДРЛ) мощностью 400 Вт с колбой, покрытой изнутри люминофором. Трубку Шленка и лампу погружали в сосуд соответствующего размера, покрытый изнутри алюминиевой фольгой, охлаждение осуществляли проточной водой.

Исходные соединения получали по описанным методикам: (C₄H₄BPh)Rh(μ - η : η -C₄H₄BPh)Rh(C₄H₄BPh) (**2**),^{22,28} Cs[(C₄H₄BPh)₂Rh] (Cs[**3**]),¹⁴⁹ CpRh(η -C₄H₄BPh) (**4**),¹⁴⁹ [(η -C₄H₄BPh)RhI]₄,³¹ $[CpFe(Me_2S)_3]BF_4$,¹⁵⁰ $[Cp*Fe(MeCN)_3]BF_4$,^{46,151} $[CpRu(MeCN)_3]PF_6$,¹⁵² $[Cp*Ru(MeCN)_3]PF_{6}$,¹⁵³ $[Cp*RuCl_2]_{2}$,¹⁵⁴ $[CpNi(C_5H_6)]BF_4$,¹⁵⁵ [CpNi(SMe₂)₂]BF₄,¹⁵⁶ [(C₄Me₄)Co(MeCN)₃]PF₆,⁴⁸ [(1,5-C₈H₁₂)RhCl]₂,¹⁵⁷ [(1,5-C₁H₁₂)RhCl]₂,¹⁵⁷ $[Rh(C_2H_4)_2Cl]_2,^{98}$ C_8H_{12})IrCl]₂,¹⁵⁸ $[(CO)_{3}Mn(MeCN)_{3}]PF_{6}$,¹⁵⁹ $[Re_2(CO)_6(T\Gamma\Phi)_2Br_2]$,¹⁶¹ AgBF₄·3(диоксан),¹⁶² $[C_{10}H_8Mn(CO)_3]BF_4$,¹⁶⁰ [Cp*CoCl₂]₂,¹⁶³ [CpRhCl₂]₂,¹⁶⁴ [Cp*RhCl₂]₂,¹⁶⁵ [CpIrI₂]₂,¹⁶⁶ [Cp*IrCl₂]₂,¹⁶⁵ $[(C_6H_6)RuCl_2]_2,^{167}$ $[(\eta - 1, 3, 5 - C_6 H_3 M e_3) RuCl_2]_2,^{167}$ $[(C_6Me_6)RuCl_2]_2,^{168}$ $[(C_7H_8)RuCl_2]_2$,¹⁶⁹ FeCl₂·2T $\Gamma\Phi$,¹⁷⁰ NiBr₂*DME,¹⁷¹ Tl[TlC₂B₉H₁₁],¹⁷² Cs[7,8-Na[9-SMe₂-7,8-C₂B₉H₁₀],¹⁷⁴ $Me_2-7, 8-C_2B_9H_{10}], ^{173}$ [Ph₃C]PF₆,¹⁷⁵ $CpCo(C_2H_4)_2$.¹⁷⁶ Комплекс [(η -C₄H₄BCy)Co(CO)_2]_2 получали аналогично синтезу $[(\eta - C_4 H_4 BR)Co(CO)_2]_2$ (R = Me, Ph).²⁴ Оптимизированная методика синтеза CpCo(μ -1,3-C₃B₂Me₅)H⁶¹ приведена ниже.

Спектры ЯМР ¹Н (400.13 МГц), ¹¹В (128.38 МГц), ¹³С (100.61 МГц) и $^{31}\mathbf{P}$ (161.98 МГц) измеряли на спектрометре "Bruker AMX-400" относительно остаточных сигналов растворителя (¹H, ¹³C) или внешнего стандарта (¹¹В – BF₃·Et₂O, ³¹Р – 85% H₃PO₄). Химические сдвиги (δ) М.Д., константы спин-спинового взаимодействия, измерены В a приведенные скобках после сокращенного обозначения В мультиплетности, - в Гц. Спектры поглощения в УФ/видимой области спектрофотометре "Specord M40". ИК-спектры регистрировали на спектрофотометре "FT-801 (Lumex) регистрировали на FTIR" В вазелиновом масле (диапазон 400-4000 cm⁻¹). Масс-спектры записаны на приборе "Finnigan Polaris Q" с использованием метода электронного удара. Масс-спектры высокого разрешения получены на приборе "Waters LCT Premier" методом "электроспрей" масс-спектрометрии В режиме положительного иона. Значения электрохимических потенциалов приведены по отношению к насыщенному каломельному электроду (НКЭ), если не указано иного. Потенциал одноэлектронного окисления ферроцена в данных условиях составил $E^{\circ} = +0.39$ В. Рентгеноструктурные исследования проводили на дифрактометрах "Bruker SMART 1000 CCD", "Syntex P2₁" и "Bruker Apex II CCD".

Оптимизацию геометрии проводили без ограничений по симметрии с помощью програмы Priroda 6¹⁷⁷ с использованием функционала PBE,¹⁷⁸ скалярно-релятивистского Гамильтониана,¹⁷⁹ атомных базисных наборов гауссовых функций¹⁸⁰ и техники уточнения плотности (density-fitting).¹⁸¹ Использовался полноэлектронный трехэкспонентный базис L2 с двумя поляризационными функциями.¹⁸² Расчеты частот и внутренней координаты реакции (IRC)¹⁸³ проводились на этом же уровне.

Анализ разложения энергии проводили с помощью программы ADF (2006.01)^{184,185} по методу Морокумы-Циглера.^{56,57} Расчеты проводили с использованием функционала BP86^{186,187} и полноэлектронного трехэкспонентного базиса TZ2P с двумя поляризационными функциями (точность интегрирования 6.0). Скалярные релятивистские эффекты учитывались с помощью регулярного приближения нулевого порядка (ZORA).¹⁸⁸

Электростатические потенциалы на ядрах были рассчитаны для оптимизированных структур на уровне BP86/TZ2P программой Gaussian 98¹⁸⁹ с использованием BP86 функционала и трехэкспоненциального базиса с двумя функциями поляризации def2-TZVPP.^{190,191}

Редокс-потенциалы относительно НКЭ (E°_{redox}) были рассчитаны, используя следующую схему: $E^{\circ}_{redox} = [-(E_{red} - E_{ox}) - 4.68]/n$, где E_{red} и E_{ox} – энергии (в еВ) восстановленной и окисленной форм с учетом сольватации, а n – число электронов (в нашем случае равно 1). Величина 4.68 соответствует абсолютному потенциалу электрода сравнения (НКЭ).¹⁹² Сольватоционные эффекты были учтены с помощью модели сольватации

250

РСМ.¹⁹³ Для молекулярного моделирования и визуализации использовали программу ChemCraft.¹⁹⁴

Экспериментальная часть к Главе 1

Синтез CpCo $(\eta$ -C4H4BCy) (1)

Смесь 250 мг (0.48 ммоля) комплекса $[(\eta-C_4H_4BCy)Co(CO)_2]_2$ и 92 мг (0.49 ммоля) никелоцена в 4 мл мезителена кипятили 8 ч. Растворитель удалили в вакууме и остаток хроматографировали петролейным эфиром на колонке с окисью алюминия (2 × 15 см). Собрали желтую фракцию. Растворитель удалили в вакууме. Получили соединение **1** в виде вязкой жидкости желтого цвета, выход 242 мг (93%). Комплекс **1** медленно разлагается на воздухе, поэтому для использования в течение длительного времени его хранили в инертной атмосфере при -15° C. Спектр ЯМР ¹H (CDCl₃): 4.99 (м, 2H, β-H, C₄H₄B), 4.82 (с, 5H, Cp), 3.51 (м, 2H, α-H, C₄H₄B), 1.83 (м, 2H, Cy), 1.69 (м, 3H, Cy), 1.22 (м, 5H, Cy), 1.05 (м, 1H, Cy). Спектр ЯМР ¹¹B {¹H} (CDCl₃): 22.5 (уш. с, C₄H₄B).

Синтез $Cp*Rh(\eta-C_4H_4BPh)$ (5)

Смесь 130 мг (0.09 ммоля) комплекса $[(\eta-C_4H_4BPh)RhI]_4$ и 61 мг (0.43 ммоля) комплекса Cp*Li в 5 мл ТГФ перемешивали 24 ч. Растворитель удалили в вакууме и остаток хроматографировали петролейным эфиром на колонке с силикагелем (1 × 10 см). Собрали желтую фракцию. Растворитель удалили в вакууме. Получили комплекс **5** в виде желтого твердого вещества, выход 58 мг (44%). Найдено (%): C, 63.89; H, 6.56. $C_{20}H_{24}BRh$. Вычислено (%): C, 63.53; H, 6.40. Спектр ЯМР ¹H (CDCl₃): 7.55 (м, 2H, Ph_o), 7.28 (м, 2H, Ph_m), 7.19 (м, 1H, Ph_p), 4.90 (м, 2H, β-H), 3.96 (м, 2H, α-H), 1.78 (с, 15H, Cp*). Спектр ЯМР ¹¹B {¹H} (CDCl₃): 14.2 (уш. с, C₄H₄B).
Синтез трехпалубного комплекса [CpCo(µ-η:η-C4H4BCy)RhCp*](BF4)₂ (6(BF4)₂)

Смесь 45 мг (0.074 ммоля) комплекса [Cp*RhCl₂]₂ и 139 мг (0.305 ммоля) комплекса AgBF₄·3(диоксан) в 1 мл нитрометана перемешивали в течение ~0.5 ч. Образовавшийся осадок AgCl отцентрифугировали и полученный раствор добавили к 40 мг (0.148 ммоля) комплекса CpCo(η -C₄H₄BCy) (1). Реакционный раствор перемешивали ~2 ч, а затем добавили ~10 мл эфира. Выпавший оранжевый осадок отфильтровали, переосадили эфиром из ацетона и сушили в вакууме. Получили комплекс **6**(BF₄)₂ в виде оранжевого твердого вещества, выход 75 мг (75%). Найдено (%): C 43.71, Н 5.27. C₂₅H₃₅B₃CoF₈Rh. Вычислено (%): C 44.04, Н 5.17. Спектр ЯМР ¹H (ацетон-*d*₆): 6.47 (м, 2H, β-H, C₄H₄B), 6.25 (с, 5H, Cp), 4.92 (м, 2H, α-H, C₄H₄B), 2.14 (м, 2H, Cy), 2.04 (с, 15H, Cp*), 1.79 (м, 3H, Cy), 1.57 (м, 2H, Cy), 1.45 (м, 3H, Cy), 1.29 (м, 1H, Cy). Спектр ЯМР ¹¹B {¹H} (ацетон-*d*₆): 19.0 (уш. с, C₄H₄B), -0.4 (с, BF₄).

Синтез трехпалубного комплекса [СрСо(µ-η:η C4H4BCy)Ru(C6H6)](BF4)2 (7a(BF4)2) (7a(BF4)2) (7a(BF4)2)

Аналогично синтезу **6**(BF₄)₂, из 40 мг (0.08 ммоля) [(C₆H₆)RuCl₂]₂, 150 мг (0.33 ммоля) комплекса AgBF₄·3(диоксан) и 43 мг (0.16 ммоля) комплекса CpCo(η -C₄H₄BCy) в 1 мл нитрометана. Получили комплекс **7a**(BF₄)₂ в виде красного твердого вещества, выход 52 мг (53%). Найдено (%): C 40.59, H 4.12. C₂₁H₂₆B₃CoF₈Ru. Вычислено (%): C 40.49, H 4.21%. Спектр ЯМР ¹H (ацетон-*d*₆): 6.60 (с, 6H, C₆H₆), 6.56 (м, 2H, β-H, C₄H₄B), 6.41 (с, 5H, Cp), 4.98 (м, 2H, α -H, C₄H₄B), 2.23 (м, 2H, Cy), 1.79 (м, 3H, Cy), 1.48 (м, 5H, Cy), 1.24 (м, 1H, Cy). Спектр ЯМР ¹¹B {¹H} (ацетон-*d*₆): 19.8 (уш. с, C₄H₄B), 0.8 (с, BF₄).

Синтез трехпалубного комплекса [CpCo(µ-η:η-C4H4BCy)Ru(1,3,5-C₆H₃Me₃)](BF₄)₂ (7b(BF₄)₂)

Аналогично синтезу **6**(BF₄)₂, из 35 мг (0.06 ммоля) [(1,3,5-C₆H₃Me₃)RuCl₂]₂, 120 мг (0.26 ммоля) комплекса AgBF₄·3(диоксан) и 33 мг (0.12 ммоля) комплекса CpCo(η-C₄H₄BCy) в 1 мл нитрометана. Получили комплекс **7b**(BF₄)₂ в виде красного твердого вещества, выход 51 мг (63%). Найдено (%): C, 42.53; H, 4.82. C₂₄H₃₂B₃CoF₈Ru. Вычислено (%): C, 43.35; H, 4.85. Спектр ЯМР ¹H (ацетон-*d*₆): 6.45 (м, 2H, β-H, C₄H₄B), 6.41 (c, 3H, C₆H₃Me₃), 6.30 (c, 5H, Cp), 4.70 (м, 2H, α-H, C₄H₄B), 2.32 (c, 9H, C₆H₃Me₃), 2.23 (м, 2H, Cy), 1.79 (м, 3H, Cy), 1.48 (м, 5H, Cy), 1.24 (м, 1H, Cy). Спектр ЯМР ¹¹B {¹H} (ацетон-*d*₆): 19.4 (уш. c, C₄H₄B), 0.0 (c, BF₄).

Синтез трехпалубного комплекса [CpRh(µ-η:η-C4H4BPh)CoCp*](BF4)₂ (8(BF4)₂)

Смесь 43 мг (0.08 ммоля) комплекса [Cp*CoCl₂]₂ и 150 мг (0.33 ммоля) комплекса AgBF₄·3(диоксан) в 1 мл нитрометана перемешивали в течение ~0.5 ч. Образовавшийся осадок AgCl отцентрифугировали и полученный раствор добавили к 50 мг (0.16 ммоля) комплекса CpRh(η -C₄H₄BPh) (4). Реакционный раствор перемешивали 2 ч, затем добавили ~10 мл эфира. Выпавший красный осадок отфильтровали, дважды переосадили эфиром из нитрометана и сушили в вакууме. Получили комплекс **8**(BF₄)₂ в виде красного твердого вещества, выход 50 мг (46%). Найдено (%): C, 44.37; H, 4.25. C₂₅H₂₉B₃CoF₈Rh. Вычислено (%): C, 44.44; H, 4.33. Спектр ЯМР ¹H (ацетон-*d*₆): 7.95 (м, 2H, Ph_o), 7.53 (м, 3H, Ph_m, Ph_p), 6.57 (м, 2H, β-H), 6.16 (с, 5H, Cp), 5.46 (м, 2H, α-H), 1.85 (с, 15H, Cp*). Спектр ЯМР ¹¹B {¹H} (ацетон-*d*₆): 14.0 (уш. с, C₄H₄B), –0.1 (с, BF₄).

Синтез аренового комплекса [CpRh(µ-η⁵:η⁶-C₄H₄BPh)RhCp*](BF₄)₂ (10(BF₄)₂)

Аналогично синтезу **8**(BF₄)₂ из 40 мг (0.06 ммоля) комплекса [Cp*RhCl₂]₂, 120 мг (0.26 ммоля) комплекса AgBF₄·3(диоксан) и 40 мг (0.13 ммоля) комплекса CpRh(η-C₄H₄BPh) (**4**) в 1 мл нитрометана. Получили комплекс **10**(BF₄)₂ в виде желтого твердого вещества, выход 65 мг (70%). Найдено (%): C, 41.44; H, 4.09. C₂₅H₂₉B₃F₈Rh₂. Вычислено (%): C, 41.72; H, 4.06. Спектр ЯМР ¹H (ацетон-*d*₆): 7.60 (м, 2H, Ph_o), 7.42 (м, 3H, Ph_m, Ph_p), 5.62 (м, 2H, β-H), 5.48 (c, 5H, Cp), 4.83 (м, 2H, α-H), 2.20 (c, 15H, Cp*). Спектр ЯМР ¹¹B {¹H} (ацетон-*d*₆): 10.2 (уш. c, C₄H₄B), –0.2 (c, BF₄).

Для промежуточно образующегося трехпалубного комплекса [CpRh(μ - $\eta^5:\eta^5-C_4H_4BPh$)RhCp*](BF₄)₂ (9(BF₄)₂) наблюдаются следующие сигналы (в смеси с 10(BF₄)₂): Спектр ЯМР ¹Н (нитрометан- d_3): 7.71 (м, 2H, Ph_o), 7.46 (м, 3H, Ph_m, Ph_p), 6.24 (м, 2H, β-H), 6.12 (с, 5H, Cp), 5.30 (м, 2H, α-H), 1.83 (с, 15H, Cp*).

Синтез трехпалубного комплекса [Cp*Rh(µ-η:η-C4H4BPh)RhCp*](BF4)2 (11(BF4)2)

Аналогично синтезу **8**(BF₄)₂ из 21 мг (0.03 ммоля) комплекса [Cp*RhCl₂]₂, 63 мг (0.14 ммоля) комплекса AgBF₄·3(диоксан) и 25 мг (0.07 ммоля) комплекса Cp*Rh(η-C₄H₄BPh) (**5**) в 1 мл нитрометана. Получили комплекс **11**(BF₄)₂ в виде желтого твердого вещества, выход 45 мг (86%). Найдено (%): C, 44.24; H, 5.07. C₃₀H₃₉B₃F₈Rh₂. Вычислено (%): C, 45.62; H, 4.98. Спектр ЯМР ¹H (ацетон-*d*₆): 7.75 (м, 2H, Ph_o), 7.54 (м, 2H, Ph_m), 7.46 (м, 1H, Ph_p), 6.19 (м, 2H, β-H), 5.19 (м, 2H, α-H), 1.90 (с, 15H, Cp*). Спектр ЯМР ¹¹B {¹H} (ацетон-*d*₆): 12.4 (уш. с, C₄H₄B), –0.1 (с, BF₄).

Синтез трехпалубного комплекса [CpRh(µ-η:η-C4H4BPh)IrCp*](BF4)₂ (12(BF4)₂)

Смесь 64 мг (0.08 ммоля) комплекса $[Cp*IrCl_2]_2$ и 150 мг (0.33 ммоля) комплекса AgBF₄·3(диоксан) в 1 мл ацетона перемешивали в течение ~0.5 ч. Образовавшийся осадок AgCl отцентрифугировали и полученный раствор добавили к 50 мг (0.16 ммоля) комплекса CpRh(η-C₄H₄BPh) (**4**). Реакционный раствор перемешивали ~2 ч при -15 °C, затем добавили ~10 мл эфира. Выпавший желтый осадок отфильтровали, дважды переосадили эфиром из нитрометана и сушили в вакууме. Получили комплекс **12**(BF₄)₂ в виде желтого твердого вещества, выход 84 мг (64%). Найдено (%): С 37.05, Н 3.67. С₂₅H₂₉B₃F₈IrRh. Вычислено (%): С 37.11, Н 3.61. . Спектр ЯМР ¹H (ацетон-*d*₆): 7.78 (м, 2H, Ph_o), 7.46 (м, 2H, Ph_m), 7.37 (м, 1H, Ph_p), 6.48 (м, 2H, β -H), 6.44 (c, 5H, Cp), 5.55 (м, 2H, α -H), 1.97 (c, 15H, Cp*). Спектр ЯМР ¹¹B {¹H} (ацетон-*d*₆): 10.2 (уш. с, C₄H₄B), -0.2 (с, BF₄).

Для побочно образующегося аренового комплекса [CpRh(μ - η^5 : η^6 -C₄H₄BPh)IrCp*](BF₄)₂ (**13**(BF₄)₂) наблюдаются следующие сигналы: Спектр ЯМР ¹H (ацетон-*d*₆, в смеси с **12**(BF₄)₂): 5.60 (м, 2H, β-H), 5.50 (с, 5H, Cp), 4.79 (м, 2H, α-H), 2.32 (с, 15H, Cp*). Сигналы протонов фенильного кольца идентифицировать не удалось.

Синтез трехпалубного комплекса [CpRh(µ-η:η-C4H4BPh)Ru(1,3,5-C6H3Me3)](BF4)2 (14a(BF4)2)

Аналогично синтезу **12**(BF₄)₂ из 47 мг (0.08 ммоля) комплекса $[(1,3,5-C_6H_3Me_3)RuCl_2]_2$, 150 мг (0.33 ммоля) комплекса AgBF₄·3(диоксан) и 50 мг (0.16 ммоля) комплекса CpRh(η -C₄H₄BPh) (**4**) в 1 мл ацетона. Получили комплекс **14a**(BF₄)₂ в виде оранжевого твердого вещества, выход: 84 мг (74%). Найдено (%): C 40.46, H 3.61. C₂₄H₂₆B₃F₈RhRu. Вычислено (%): C

41.01, H 3.73%. . Спектр ЯМР ¹H (ацетон-*d*₆): 7.84 (м, 2H, Ph_o), 7.42 (м, 3H, Ph_m, Ph_p), 6.43 (м, 2H, β-H), 6.36 (с, 3H, C₆*H*₃Me₃), 6.35 (с, 5H, Cp), 5.44 (м, 2H, α-H), 2.21 (с, 9H, C₆H₃Me₃). Спектр ЯМР ¹¹B {¹H} (ацетон-*d*₆): 13.7 (уш. с, C₄H₄B), -0.1 (с, BF₄).

Для побочно образующегося аренового комплекса [CpRh(μ - η^5 : η^6 -C₄H₄BPh)Ru(1,3,5-C₆H₃Me₃)](BF₄)₂ (**15a**(BF₄)₂) наблюдаются следующие сигналы: Спектр ЯМР ¹H (ацетон-*d*₆, в смеси с **14a**(BF₄)₂): 7.16 (м, 2H, Ph_o), 6.86 (м, 3H, Ph_m, Ph_p), 6.92 (с, 3H, C₆H₃Me₃), 5.57 (м, 2H, β-H), 5.46 (с, 5H, Cp), 4.79 (м, 2H, α -H), 2.44 (с, 9H, C₆H₃Me₃).

Синтез трехпалубного комплекса [CpRh(µ-ŋ:ŋ C4H4BPh)Ru(C6Me6)](BF4)2 (14b(BF4)2)

Аналогично синтезу **12**(BF₄)₂ из 54 мг (0.08 ммоля) комплекса [(1,3,5-C₆H₃Me₃)RuCl₂]₂, 150 мг (0.33 ммоля) комплекса AgBF₄·3(диоксан) и 50 мг (0.16 ммоля) комплекса CpRh(η -C₄H₄BPh) (**4**) в 1 мл ацетона. Получили комплекс **14b**(BF₄)₂ в виде оранжевого твердого вещества, выход: 80 мг (67%). Найдено (%): C 43.17, H 4.65. C₂₇H₃₂B₃F₈RhRu. Вычислено (%): C 43.53, H 4.33%. . Спектр ЯМР ¹H (ацетон-*d*₆): 7.78 (м, 2H, Ph_o), 7.49 (м, 2H, Ph_m), 7.43 (м, 1H, Ph_p), 6.30 (м, 2H, β-H), 6.24 (с, 5H, Cp), 5.29 (м, 2H, α -H), 2.26 (с, 18H, C₆Me₆). Спектр ЯМР ¹¹B {¹H} (ацетон-*d*₆): 13.0 (уш. с, C₄H₄B), -0.1 (с, BF₄).

Для побочно образующегося аренового комплекса [CpRh(μ - η^5 : η^6 -C₄H₄BPh)Ru(C₆Me₆)](BF₄)₂ (**15b**(BF₄)₂) наблюдаются следующие сигналы: Спектр ЯМР ¹H (ацетон-*d*₆, в смеси с **14b**(BF₄)₂): 6.83 (м, 3H, Ph_m, Ph_p), 5.62 (м, 2H, β-H), 5.45 (с, 5H, Cp), 4.79 (м, 2H, α-H), 2.52 (с, 18H, C₆Me₆). Часть сигналов протонов фенильного кольца идентифицировать не удалось.

Синтез трехпалубного комплекса [Cp*Ir(µ-η:η-C4H4BPh)IrCp*](BF4)₂ (16(BF4)₂). ЯМР ¹Н эксперимент

В ЯМР-ампулу поместили 3 мг (0.0037 ммоля) трехпалубного комплекса [CpRh(μ - η : η -C₄H₄BPh)IrCp*](BF₄)₂ (**12**(BF₄)₂) и 0.4 мл CD₃NO₂. Реакционную смесь выдерживали при 100 °C в течение 12 ч. Согласно спектру ЯМР ¹Н реакционная смесь наряду с сигналами исходного комплекса **12**(BF₄)₂ (~ 70%) содержит новый набор сигналов, относящихся к продукту **16**(BF₄)₂ (~ 30%). Спектр ЯМР ¹Н (нитрометан-*d*₃): 6.11 (м, 2H, β-H), 5.15 (м, 2H, α-H), 1.93 (с, 15H, Cp*). Сигналы протонов фенильного кольца идентифицировать не удалось.

Синтез аренового комплекса [CpRh(µ-η⁵:η⁶-C₄H₄BPh)RuCp*]BF₄ (17BF₄)

Смесь 44 мг (0.14 ммоля) комплекса CpRh(η -C₄H₄BPh) (**4**), 40 мг (0.07 ммоля) комплекса [Cp*RuCl₂]₂, 91 мг (0.31 ммоля) комплекса TlBF₄ и 100 мг (избыток) цинковой пыли в 4 мл TГФ перемешивали 2 ч при комнатной температуре. Растворитель удалили в вакууме. Остаток растворили в 2 мл CH₂Cl₂ и полученный раствор пропустили через слой силикагеля (1 см). Добавление эфира (10 мл) привело к выпадению белого осадка, который отфильтровали и сушили в вакууме. Получили комплекс **17**BF₄ в виде белого твердого вещества, выход 46 мг (56%). Найдено (%): C, 47.47; H, 4.52. C₂₅H₂₉B₂F₄RhRu. Вычислено (%): C, 47.58; H, 4.63. Спектр ЯМР ¹H (ацетон-*d*₆): 5.97 (м, 2H, Ph_o), 5.91 (м, 3H, Ph_m, Ph_p), 5.45 (м, 2H, β-H), 5.38 (с, 5H, Cp), 4.49 (м, 2H, α-H), 1.91 (с, 15H, Cp*). Спектр ЯМР ¹¹B {¹H} (ацетон-*d*₆): 13.8 (уш. с, C₄H₄B), –0.1 (с, BF₄).

Синтез аренового комплекса [CpRh(µ-η⁵:η⁶-C₄H₄BPh)Co(η-C₄Me₄)]PF₆ (18PF₆)

Раствор 40 мг (0.13 ммоля) комплекса CpRh(η-C₄H₄BPh) (4) и 42 мг (0.11 ммоля) комплекса [(η-C₄Me₄)Co(η-C₆H₆)]PF₆ в 15 мл CH₂Cl₂ облучали видимым светом в течение 10 ч. Растворитель удалили в вакууме и остаток хроматографировали на колонке с силикагелем (1 × 10 см), используя в качестве элюента смесь CH₂Cl₂/Me₂CO (10/1). Собрали первую желтую фракцию. Растворитель удалили в вакууме, остаток дважды переосадили Et₂O из CH₂Cl₂ и сушили в вакууме. Получили комплекс **18**BF₄ в виде желтого твердого вещества, выход 36 мг (54%). Найдено (%): C 44.21, H 4.20. C₂₃H₂₆BCoF₆PRh. Вычислено (%): C 44.55, H 4.23. Спектр ЯМР ¹H (ацетон-*d*₆): 6.67 (м, 2H, Ph_o), 6.56 (м, 3H, Ph_m, Ph_p), 5.48 (м, 2H, β-H), 5.39 (с, 5H, Cp), 4.60 (м, 2H, α-H), 1.56 (с, 12H, C₄Me₄). Спектр ЯМР ¹¹B {¹H} (ацетон-*d*₆): 14.1 (уш. с, C₄H₄B), –0.1 (с, BF₄).

Синтез аренового комплекса [CpRh(µ-η⁵:η⁶-C₄H₄BPh)Rh(1,5-C₈H₁₂)]BF₄ (19BF₄)

Смесь 37 мг (0.07 ммоля) комплекса [(1,5-C₈H₁₂)RhCl]₂ и 67 мг (0.15 ммоля) комплекса AgBF₄·3диоксан в 3 мл ТГФ перемешивали в течение 1 образовавшийся ч при комнатной температуре, осалок AgC1 отцентрифугировали. Полученный раствор добавили к 50 мг (0.16 ммоля) комплекса CpRh(η-C₄H₄BPh) (4) и перемешивали 24 ч при комнатной температуре. Растворитель удалили В вакууме, остаток дважды переосадили эфиром из CH₂Cl₂ и сушили в вакууме. Получили комплекс **19**ВF₄ в виде желтого твердого вещества, выход 74 мг (83%). Найдено (%): С 45.42, Н 4.24. С₂₃Н₂₆В₂F₄Rh₂. Вычислено (%): С 45.59, Н 4.33. Спектр ЯМР ¹Н (ацетон-*d*₆): 7.09 (м, 2Н, Ph_o), 6.94 (м, 2Н, Ph_m), 6.83 (м, 1Н, Ph_p), 5.44 (c, 5H, Cp), 4.60 (м, 4H, C₈H₁₂), 4.55 (м, 2H, α-H), 2.30 (м, 4H, C₈H₁₂), 2.13 (м, 4H, C₈H₁₂). Не удается определить сигнал β-Н из-за перекрывания

с сигналом от Ср лиганда. Спектр ЯМР ¹¹В {¹H} (ацетон-*d*₆): 13.1 (уш. с, C₄H₄B), -0.1 (с, BF₄).

Синтез аренового комплекса [CpRh(µ-η⁵:η⁶-С₄H₄BPh)Ir(1,5-С₈H₁₂)]BF₄ (20BF₄)

Аналогично синтезу **19**ВF₄ из 50 мг (0.07 ммоля) комплекса [(1,5-C₈H₁₂)IrCl]₂, 67 мг (0.15 ммоля) комплекса AgBF₄·3(диоксан) и 50 мг (0.16 ммоля) комплекса CpRh(η-C₄H₄BPh) (**4**) в 3 мл ТГФ. Получили комплекс **20**ВF₄ в виде белого твердого вещества, выход 38 мг (37%). Найдено (%): C 39.01, H 3.67. C₂₃H₂₆B₂F₄RhIr. Вычислено (%): C 39.74, H 3.77. Спектр ЯМР ¹H (ацетон-*d*₆): 6.98 (м, 2H, Ph_o), 6.91 (м, 2H, Ph_m), 6.85 (м, 1H, Ph_p), 5.46 (с, 5H, Cp), 5.45 (м, 2H, β-H), 4.53 (м, 4H, C₈H₁₂), 2.16 (м, 4H, C₈H₁₂), 2.09 (м, 4H, C₈H₁₂). Не удается определить сигнал α-H из-за перекрывания с сигналом от C₈H₁₂ лиганда. Спектр ЯМР ¹¹В {¹H} (ацетон-*d*₆): 12.8 (уш. с, C₄H₄B), -0.1 (с, BF₄).

Синтез трехпалубного комплекса (C4H4BPh)Rh(µ-η:η-C4H4BPh)RuCp (22a)

Смесь 86 мг (0.2 ммоля) комплекса [CpRu(MeCN)₃]PF₆ и 104 мг (0.2 ммоля) комплекса Cs[(C₄H₄BPh)₂Rh] (Cs[**3**]) в 10 мл CH₂Cl₂ перемешивали в течение 12 ч при комнатной температуре. Растворитель удалили в вакууме и остаток храматографировали на колонке с Al₂O₃ (2 × 10 см) смесью гексан/CH₂Cl₂ (7:1). Собрали оранжевую фракцию и растворитель удалили в вакууме. Продукт может быть перекристализован из смеси петролейный эфир/этанол (1:1). Получили комплекс **22a** в виде оранжевого твердого вещества, выход 94 мг (86%). Найдено (%): С 54.70, Н 4.34. $C_{25}H_{23}B_2RhRu$. Вычислено (%): С 54.69, Н 4.22. Спектр ЯМР ¹Н (ацетон-*d*₆): 7.55 (м, 2H, Ph), 7.42 (м, 2H, Ph), 7.24 (м, 3H, Ph), 7.16 (м, 2H, Ph), 7.09

(м, 1H, Ph), 5.37 (м, 2H, β-H_{терм}), 4.74 (м, 2H, β-H_{мост}), 4.36 (с, 5H, Cp), 4.29 (м, 2H, α-H_{терм}), 3.80 (м, 2H, α-H_{мост}). Спектр ЯМР ¹¹В {¹H} (ацетон-*d*₆): 18.4 (1B, уш. с, С₄H₄B_{терм}), 7.5 (1B, уш. с, С₄H₄B_{мост}).

Синтез трехпалубного комплекса (C4H4BPh)Rh(µ-η:η-C4H4BPh)RuCp* (22b)

22a 100 (0.2)Аналогично синтезу ИЗ МΓ ммоля) комплекса $[Cp*Ru(MeCN)_3]PF_6$ и 104 мг (0.2 ммоля) комплекса $Cs[(C_4H_4BPh)_2Rh]$ (Cs[3]) в 10 мл CH₂Cl₂. Получили комплекс 22b в виде оранжевого твердого вещества, выход 100 мг (81%). Найдено (%): С 58.05, Н 5.37, В 3.42. С₃₀Н₃₃В₂RhRu. Вычислено (%):С 58.19, Н 5.37, В 3.49. Спектр ЯМР ¹Н (ацетон-d₆): 7.50 (м, 2H, Ph), 7.32 (м, 2H, Ph), 7.20 (м, 5H, Ph), 7.10 (м, 1H, Ph), 5.22 (M, 2H, β-H_{терм}), 4.42 (M, 2H, β-H_{мост}), 4.14 (M, 2H, α-H_{терм}), 3.46 (M, 2H, α-H_{мост}), 1.61 (с, 15H, Cp*). Спектр ЯМР ¹¹В {¹H} (ацетон-*d*₆): 17.9 (1B, уш. с, C₄H₄B_{терм}), 6.5 (1В, уш. с, C₄H₄B_{мост}).

Синтез трехпалубного комплекса (C4H4BPh)Rh(µ-η:η-C4H4BPh)FeCp* (23)

22a 91 (0.2)Аналогично синтезу ИЗ МΓ ммоля) комплекса $[Cp*Fe(MeCN)_3]PF_6$ и 104 мг (0.2 ммоля) комплекса Cs $[(C_4H_4BPh)_2Rh]$ (Cs[3]) в 10 мл CH₂Cl₂. Получили комплекс 23 в виде темно-зеленого твердого вещества, выход 73 мг (64%). Найдено (%): С 62.96, Н 5.87. С₃₀Н₃₃В₂RhFe. Вычислено (%): С 62.78, Н 5.80. Спектр ЯМР ¹Н (ацетон-*d*₆): 7.46 (м, 2H, Ph), 7.40 (м, 2H, Ph), 7.27 (м, 2H, Ph), 7.20 (м, 3H, Ph), 7.17 (м, 1H, Ph), 5.03 (M, 2H, β-H_{TEDM}), 4.34 (M, 2H, β-H_{MOCT}), 3.93 (M, 2H, α-H_{TEDM}), 3.26 (м, 2H, α -H_{мост}), 1.65 (с, 15H, Cp*). Спектр ЯМР ¹¹В {¹H} (ацетон- d_6): 18.0 (1В, уш. с, С₄Н₄В_{терм}), 6.6 (1В, уш. с, С₄Н₄В_{мост}).

Синтез трехпалубного комплекса (C4H4BPh)Rh(µ-ŋ:η C4H4BPh)Co(C4Me4) (24) (24) (24) (24)

Аналогично 22a 86 (0.2)синтезу ИЗ МΓ ммоля) комплекса [(C₄Me₄)Co(MeCN)₃]PF₆ и 104 мг (0.2 ммоля) комплекса Cs[(C₄H₄BPh)₂Rh] (Cs[3]) в 10 мл CH₂Cl₂. Получили комплекс 24 в виде кирпично-красного твердого вещества, выход 81 мг (74%). Найдено (%): С 61.11, Н 5.67, В 3.91. С₂₈Н₃₀В₂CoRh. Вычислено (%):С 61.15, Н 5.50, В 3.93. Спектр ЯМР ¹Н (ацетон-*d*₆): 7.49 (м, 4H, Ph), 7.19 (м, 6H, Ph), 5.14 (м, 2H, β-H_{терм}), 4.69 (м, 2H, β-H_{MOCT}), 4.07 (M, 2H, α-H_{TEDM}), 3.70 (M, 2H, α-H_{MOCT}), 1.18 (c, 12H, C₄Me₄). Спектр ЯМР ¹¹В {¹H} (ацетон- d_6): 17.7 (1В, уш. с, C₄H₄B_{терм}), 8.7 (1В, уш. с, $C_4H_4B_{MOCT}$).

Синтез трехпалубного комплекса (C4H4BPh)Rh(µ-ŋ:η-C4H4BPh)Ir(1,5-C8H12) (25)

Аналогично синтезу **22а** из 67 мг (0.1 ммоля) комплекса [(1,5-C₈H₁₂)IrCl]₂ и 104 мг (0.2 ммоля) комплекса Cs[(C₄H₄BPh)₂Rh] (Cs[**3**]) в 10 мл CH₂Cl₂. Получили комплекс **24** в виде желто-оранжевого твердого вещества, выход 93 мг (68%). Найдено (%): C 49.44, H 4.57, B 3.05. C₂₈H₃₀B₂IrRh. Вычислено (%):C 49.22, H 4.43, B 3.16. Спектр ЯМР ¹H (ацетон- d_6): 7.49 (m, 4H, Ph), 7.20 (m, 6H, Ph), 5.45 (м, 2H, β-H_{терм}), 5.15 (м, 2H, β-H_{мост}), 4.41 (м, 2H, α-H_{терм}), 3.91 (м, 4H, -CH=CH- в Cod), 3.51 (м, 2H, α-H_{мост}), 1.87 (м, 4H, -CH₂в Cod), 1.59 (м, 4H, -CH₂- в Cod). Спектр ЯМР ¹¹В {¹H} (ацетон- d_6): 17.7 (1B, уш. с, C₄H₄B_{терм}), 8.7 (1B, уш. с, C₄H₄B_{мост}).

Экспериментальная часть к Главе 2

Синтез СрСо(1,3-С3В2Ме5)Н (26)

Комплекс **26** и исходные вещества чрезвычайно чувствительны к воздуху. Все операции проводили в атмосфере аргона. К раствору 1 г (5.56 ммоля) свежеприготовленного комплекса СрСо(C₂H₄)₂ при –30 °C в 40 мл гексана добавили 0.85 г (6.30 ммоля) C₃B₂Me₅H и перемешивали при этой температуре 1 час, а затем при комнатной температуре в течение ночи. Растворитель удалили в вакууме, остаток растворили в гексане и фильтровали через слой Al₂O₃ (2 × 4 см). Собрали коричневую фракцию, растворитель удалили в вакууме. Получили комплекс **26** в виде коричневого мелкокристаллического порошка, выход 1.11 г (78%). Комплекс хранили в инертной атмосфере при –15°C. ЯМР ¹H (C₆D₆): 4.09 (с, 5H, Cp), 1.69 (с, 6H, CMe), 1.19 (с, 6H, BMe), 0.96 (д, J = 4.4 Гц, 3H, СН<u>Ме</u>), –8.46 (квадруплет, J = 4.0 Гц, 1H, С<u>Н</u>Me). ЯМР ¹¹B{¹H} (C₆D₆): 26.2 (с).

Синтез Tl[CpCo(µ-η:η-1,3-С3В2Ме5)] (Tl[27])

Комплекс 27 и исходные вещества чрезвычайно чувствительны к воздуху. Все операции проводили в атмосфере аргона. Смесь 0.9 г (3.49 ммоля) комплекса СрСо(μ -1,3-C₃B₂Me₅)H (26) и 1.11 г (4.13 ммоля) комплекса TlCp кипятили в 60 мл TГФ в течение 2 ч. Растворитель удалили в вакууме. Остаток экстрагировали гексаном (4 × 20 мл), отфильтровали и растворитель удалили в вакууме. Получили продукт Tl[27] в виде коричневого твердого вещества, достаточно чистого для проведения последующих реакций. Выход 1.32 г (82%). Аналитически чистый продукт может быть получен перекристаллизацией из гексана при –20 °C. Выход 0.96 г (60 %). Найдено (%): C, 33.85; H, 4.51; B, 4.69. C₁₃H₂₀B₂CoTl.

Вычислено (%): C, 33.76; H, 4.36, B, 4.77. Спектр ЯМР ¹H (C₆D₆): 4.08 (с, 5H, Cp), 2.02 (с, 3H, CMe), 1.93 (с, 6H, CMe), 0.86 (с, 6H, BMe). Спектр ЯМР ¹¹B{¹H} (C₆D₆): 20.1 (с). Спектр ЯМР ¹³C{¹H} (C₆D₆): 82.3 (с, Co(<u>C</u>₅)), 17.1 (с, B<u>C</u>H₃), 16.0 (с, C<u>C</u>H₃), 1.4 (с, C<u>C</u>H₃) (некоторые сигналы невозможно детектировать из-за взаимодействия с квадрупольными ядрами бора).

Синтез СрСо(µ-η:η-1,3-С₃B₂Me₅)FeCp (28a)

Комплекс **28а** чувствителен к воздуху. Все операции проводили в атмосфере аргона. Анион [CpCo(1,3-C₃B₂Me₅)][–] получили *in situ* из 196 мг (0.76 ммоля) комплекса CpCo(1,3-C₃B₂Me₅)H (**26**) и 0.2 мл жидкого Na/K_{3.0} в 3 мл ТГФ. Полученный зеленый раствор фильтровали в колбу с охлажденным до -78 °C раствором 320 мг (0.81 ммоля) комплекса [CpFe(SMe₂)₃]BF₄ в 10 мл CH₂Cl₂. Реакционную смесь перемешивали 1 ч при -78 °C, 3 ч при -40 °C и в течение ночи при комнатной температуре. Растворитель удалили в вакууме и остаток хроматографировали на колонке с силикагелем (2 × 20 см). При использовании диэтилового эфира в качестве элюента собрали зеленую фракцию и удалили растворитель в вакууме. Получили комплекс **28a** в виде темно-зеленого твердого вещества, выход 174 мг (61%). Найдено (%): C, 57.67; H, 6.95; B, 5.97. C₁₈H₂₅B₂CoFe. Вычислено (%): C, 57.19; H, 6.65, B, 5.82. Спектр ЯМР ¹H (C₆D₆): 3.60 (c, 5H, CoCp), 3.36 (c, 5H, FeCp), 2.61 (c, 6H, 4,5-Me), 2.13 (c, 3H, 2-Me), 1.85 (c, 6H, 1,3-Me). Спектр ЯМР ¹¹B{¹H} (C₆D₆): 18.0 (c).

Синтез СрСо(µ-η:η-1,3-С₃В₂Ме₅)FeCp* (28b)

Комплекс **28b** чувствителен к воздуху. Все операции проводили в атмосфере аргона. Аналогично синтезу **28a**, из 100 мг (0.39 ммоля) комплекса CpCo(1,3-C₃B₂Me₅)H (**26**) и 200 мг (0.44 ммоля) комплекса

[Cp*Fe(MeCN)₃]PF₆ в 10 мл CH₂Cl₂. Получили комплекс **28b** в виде темнозеленого твердого вещества, выход 174 мг (61%). Найдено (%): C, 61.67; H, 7.87; B, 4.83. C₂₃H₃₅B₂CoFe. Вычислено (%): C, 62.02; H, 7.99, B, 4.92. Спектр ЯМР ¹H (C₆D₆): 3.63 (c, 5H, CoCp), 2.56 (c, 6H, 4,5-Me), 2.05 (c, 3H, 2-Me), 1.81 (c, 15H, FeCp*), 1.75 (c, 6H, 1,3-Me). Спектр ЯМР ¹¹B{¹H} (C₆D₆): 18.5 (c).

Синтез СрСо(µ-η:η-1,3-С₃B₂Me₅)RuCp (29a)

Анион [CpCo(1,3-C₃B₂Me₅)]⁻ получили *in situ* из 101 мг (0.39 ммоля) комплекса CpCo(1,3-C₃B₂Me₅)H (26) и 0.2 мл жидкого Na/K_{3.0} в 5 мл ТГФ. Полученный раствор зеленого цвета фильтровали в колбу с замороженной (-196 °С) суспензией 170 мг (0.39 ммоля) комплекса [CpRu(MeCN)₃]PF₆ в 10 мл ТГФ. Реакционную смесь перемешивали 1 ч при –78 °C, 2 ч при –30 °С, затем нагрели до комнатной температуры и перемешивали в течение ночи. Растворитель удалили в вакууме и остаток хроматографировали на колонке с силикагелем (2 × 25 см). При использовании петролейного эфира в качестве элюента собрали синюю фракцию, растворитель удалили в вакууме. Остаток перекристаллизовали из пентана при -78 °C и сушили в вакууме. Получили комплекс 29а в виде синего твердого вещества, выход 123 мг (75%). Аналитически чистый продукт может быть получен перекристаллизацией из EtOH. Выход 104 мг (65%). Найдено (%): C, 51.76; H, 6.11; B, 4.89. C₁₈H₂₅B₂CoRu. Вычислено (%): C, 51.12; H, 5.96, B, 5.11. Спектр ЯМР ¹Н (CDCl₃): 4.23 (с, 5Н, CoCp), 3.63 (с, 5Н, RuCp), 2.39 (с, 6Н, 4,5-Me), 1.88 (c, 3H, 2-Me), 1.25 (c, 6H, 1,3-Me). Спектр ЯМР ¹¹B{¹H} (CDCl₃): 14.3 (c). MS (EI): M⁺ 424.1.

Синтез СрСо(µ-η:η-1,3-С₃B₂Me₅)RuCp* (29b)

Аналогично синтезу **29а**, из 247 мг (0.96 ммоль) комплекса CpCo(1,3-C₃B₂Me₅)H (**26**) и 260 мг (0.24 ммоля) комплекса [Cp*RuCl]₄ в 15 мл ТГФ. Получили комплекс **29b** в виде синего твердого вещества, выход 369 мг (78%). При использовании в качестве исходного комплекса [Cp*Ru(MeCN)₃]PF₆ был получен выход 65%. Найдено (%): C, 56.62; H, 6.97; B, 4.50. C₂₃H₃₅B₂CoRu. Вычислено (%): C, 56.03; H, 7.15, B, 4.38. Спектр ЯМР ¹H (CDCl₃): 4.22 (c, 5H, CoCp), 2.13 (c, 6H, 4,5-Me), 1.61 (c, 3H, 2-Me), 1.46 (c, 15H, RuCp*), 1.02 (c, 6H, 1,3-Me). Спектр ЯМР ¹¹B{¹H} (CDCl₃): 14.2 (c). MS (EI): M⁺ 494.2.

Синтез СрСо(µ-η:η-1,3-С₃В₂Ме₅)Со(С₄Ме₄) (30)

Аналогично синтезу **29а**, из 141 мг (0.5 ммоля) комплекса CpCo(1,3-C₃B₂Me₅)H (**26**) и 196 мг (0.5 ммоля) комплекса [(C₄Me₄)Co(MeCN)₃]PF₆ в 15 мл ТГФ. Растворитель удалили в вакууме и остаток сублимировали при 100 °C (0.01 мм рт. ст.). При этом удалось отделить небольшое количество неидентифицированного желтого вещества. При 120 °C(0.01 мм рт. ст.) сублимировали комплекс **30**, который получили в виде темно-зеленого твердого вещества, выход 110 мг (52%). Найдено (%): C, 59.58; H, 7.86; B, 5.01. C₂₁H₃₂B₂Co₂. Вычислено (%): C, 59.41; H, 7.60, B, 5.19. Спектр ЯМР ¹H (CDCl₃): 4.14 (c, 5H, CoCp), 2.06 (c, 6H, 4,5-Me), 1.65 (c, 3H, 2-Me), 0.99 (c, 6H, 1,3-Me), 0.88 (c, 12H, CoC₄Me₄). Спектр ЯМР ¹¹B{¹H} (CDCl₃): 15.7 (c).

Синтез СрСо(µ-η:η-1,3-С₃В₂Ме₅)NiCp (31)

Комплекс **31** чувствителен к воздуху, разлагается в CHCl₃, CH₂Cl₂ и на носителях для хроматографии (силикагель и Al₂O₃). Все операции проводили в атмосфере аргона. Аналогично синтезу **29а**, из 140 мг (0.54 ммоля) комплекса CpCo(1,3-C₃B₂Me₅)H (**26**) и 193 мг (0.55 ммоля)

[CpNi(SMe₂)₂]BF₄ в 10 мл ТГФ. Реакционную комплекса смесь перемешивали 5 ч при –78 °C, 3 ч при –30 °C, затем нагрели до комнатной температуры и перемешивали в течение ночи. Растворитель удалили в вакууме, остаток экстрагировали гексаном (4 × 10 мл), отфильтровали в аппарат для сублимации и растворитель удалили в вакууме. Остаток сублимировали при 90 °C (0.01 мм рт. ст.). При этом удалось отделить небольшое количество неидентифицированного желтого вещества. При 180 °С (0.01 мм рт. ст.) сублимировали комплекс 31, который получили в виде темно-синего твердого вещества, выход 185 мг (90%). Найдено (%): С, 57.44; H, 6.80; B, 5.61. С₁₈H₂₅B₂CoNi. Вычислено (%): С, 56.83; H, 6.63, B, 5.79. Спектр ЯМР ¹Н (C₆D₆): -2.05 (с, 3H, 2-Me), -12.26 (с, 5H, CoCp), -37.20 и -53.69 (с, 6H, 4,5-Ме и 1,3-Ме). Спектр ЯМР ¹¹В{¹H} (С₆D₆): не удалось детектировать сигнал, по-видимому, вследствие парамагнитной природы комплекса **31**. MS (EI): M⁺ 380.2, M²⁺ 189.2.

Синтез СрСо(µ-η:η-1,3-С₃B₂Me₅)Rh(1,5-С₈H₁₂) (32)

Аналогично синтезу **29а**, из 305 мг (1.18 ммоля) комплекса CpCo(1,3-C₃B₂Me₅)H (**26**) и 292 мг (0.59 ммоля) комплекса $[(1,5-C_8H_{12})RhCl]_2$ в 5 мл ТГФ. Растворитель удалили в вакууме, остаток хроматографировали через слой силикагеля (1.5 × 7 см). При использовании петролейного эфира элюировали коричневую полосу. Растворитель удалили в вакууме. Полученный таким образом продукт достаточно чист для проведения последующих реакций. Аналитически чистый образец комплекса **32** получили при перекристаллизации из EtOH в виде темно-коричневых кристаллов, выход 504 мг (84%). Найдено (%): C, 54.20; H, 7.03; B, 4.54. C₂₁H₃₂B₂CoRh. Вычислено (%): C, 53.90; H, 6.89, B, 4.62. Спектр ЯМР ¹H (CDCl₃): 4.28 (c, 5H, Cp), 3.18 (м, 4H, CH, 1,5-C₈H₁₂), 2.03 (м, 4H, CH₂, 1,5C₈H₁₂), 1.85 (с, 6H, CMe), 1.55 (м, 4H, CH₂, 1,5-C₈H₁₂), 1.34 (с, 3H, CMe), 0.89 (с, 6H, BMe). Спектр ЯМР ¹¹В (CDCl₃): 14.24 (с).

Синтез СрСо(µ-ŋ:ŋ-1,3-С3В2Ме5)Іг(1,5-С8Н12) (33)

Аналогично синтезу **29а**, из 305 мг (1.18 ммоля) комплекса CpCo(1,3-C₃B₂Me₅)H (**26**) и 396 мг (0.59 ммоля) комплекса $[(1,5-C_8H_{12})IrCl]_2$ в 5 мл ПГФ. Аналитически чистый образец комплекса **33** получили при перекристаллизации из EtOH в виде темно-коричневых кристаллов, выход 430 мг (86%). Найдено (%): C, 45.68; H, 5.90; B, 3.88. C₂₁H₃₂B₂CoIr. Вычислено (%): C, 45.26; H, 5.79, B, 3.88. Спектр ЯМР ¹H (CDCl₃): 4.37 (c, 5H, Cp), 2.83 (м, 4H, CH, 1,5-C₈H₁₂), 1.91 (c, 6H, CMe), 1.87 (м, 4H, CH₂, 1,5-C₈H₁₂), 1.40 (м, 4H, CH₂, 1,5-C₈H₁₂), 1.35 (c, 3H, CMe), 1.15 (c, 6H, BMe). Спектр ЯМР ¹¹B (CDCl₃): 14.15 (c).

Синтез СрСо(µ-η:η-1,3-С₃B₂Me₅)Rh(C₂H₄)₂ (34)

Смесь 162 мг (0.35 ммоля) комплекса TI[CpCo(1,3-C₃B₂Me₅)] (TI[**27**]) и 68 мг (0.174 ммоля) комплекса [Rh(C₂H₄)₂Cl]₂ перемешивали в течение ночи при комнатной температуре в 5 мл TГФ. Растворитель удалили в вакууме, остаток экстрагировали гексаном (2 × 10 мл) и фильтровали. Растворитель упарили до небольшого объема (1–2 мл) и оставили для кристаллизации при –78°С. Получили комплекс **34** в виде коричневых кристаллов, выход 118 мг (81%). Найдено (%): C, 49.21; H, 6.88; B, 5.11. C₁₇H₂₈B₂CoRh. Вычислено (%): C, 49.10; H, 6.79, B, 5.20. Спектр ЯМР ¹H (CDCl₃): 4.33 (с, 5H, Cp), 1.87 (с, 6H, 4,5-CMe), 1.78 (уш. с, 8H, CH₂, этилен), 1.34 (с, 3H, 2-CMe), 0.91 (с, 6H, 1,3-BMe). Спектр ЯМР ¹³C{H} (CDCl₃): 82.0 (с, C<u>C</u>H₃) (некоторые сигналы атомов углерода не удалось детектировать из-за влияния квадрупольного ядра бора). Спектр ЯМР ¹¹B (CDCl₃): 14.01 (с).

Синтез СрСо(µ-η:η-1,3-С3В2Ме5)Мп(СО)3 (35)

Анион [CpCo(1,3-C₃B₂Me₅)]⁻ получили *in situ* из 120 мг (0.46 ммоля) комплекса CpCo(1,3-C₃B₂Me₅)H (**26**) и 0.2 мл жидкого Na/K_{3.0} в 5 мл ТГФ. Полученный раствор зеленого цвета фильтровали в колбу с 182 мг (0.47 ммоль) комплекса [C₁₀H₈Mn(CO)₃]BF₄ в 15 мл ТГФ и перемешивали при комнатной температуре в течение ночи. Растворитель удалили в вакууме, остаток хроматографировали на колонке с силикагелем (2 × 25 см), гексан/ Et_2O (1:2). элюента смесь Собрали используя в качестве фиолетовую фракцию, растворитель удалили в вакууме и остаток перекристаллизовали из гексана при -78 °C. Получили комплекс 35 в виде фиолетовых кристаллов, выход 120 мг (67%) из [C₁₀H₈Mn(CO)₃]BF₄. При использовании в качестве исходного комплекса [(CO)₃Mn(MeCN)₃]PF₆ (кипячение в течение 8 ч) был получен выход 40%. Найдено (%): С, 48.71; H, 5.01; B, 5.60. C₁₆H₂₀B₂CoMnO₃. Вычислено (%): C, 48.55; H, 5.09, B, 5.46. Спектр ЯМР ¹Н (CDCl₃): 4.45 (с, 5Н, CoCp), 2.24 (с, 6Н, 4,5-Ме), 1.61 (с, 3H, 2-Me), 1.23 (с, 6H, 1,3-Me). Спектр ЯМР ¹¹В{¹H} (CDCl₃): 18.96 (с). Спектр ИК (вазел. масло): v_{CO} (см⁻¹) = 1997, 1915. MS (EI): М⁺ 395.0.

Синтез СрСо(µ-η:η-1,3-С₃B₂Me₅)Re(CO)₃ (36)

Аналогично синтезу **35**, из 166 мг (0.64 ммоля) комплекса CpCo(1,3-C₃B₂Me₅)H (**26**) и 270 мг (0.32 ммоля) комплекса [Re₂(CO)₆(TГФ)₂Br₂] в 15 мл ТГФ. Растворитель удалили в вакууме, остаток хроматографировали на колонке с силикагелем (1.5 × 7 см), используя смесь Et₂O/CH₂Cl₂ (2:1) в качестве элюента. Собрали красную фракцию, растворитель удалили в вакууме. Получили комплекс **36** в виде красного твердого вещества, выход 155 мг (46%). Найдено (%): C, 36.75; H, 3.88; B, 4.80. C₁₆H₂₀B₂CoReO₃. Вычислено (%): C, 36.46; H, 3.82, B, 4.11. Спектр ЯМР ¹H (CDCl₃): 4.57 (с, 5H, CoCp), 2.40 (с, 6H, 4,5-Me), 1.88 (с, 3H, 2-Me), 1.28 (с, 6H, 1,3-Me). Спектр ЯМР ¹¹В{¹H} (CDCl₃): 15.39 (с). Спектр ИК (вазел. масло): v_{CO} (см⁻) = 1997, 1898. MS (EI): M⁺ 527.9.

Синтез СрСо(µ-η:η-1,3-С3В2Ме5)РtМе3 (37)

Аналогично синтезу **29а**, из 190 мг (0.74 ммоля) комплекса CpCo(1,3-C₃B₂Me₅)H (**26**) и 202 мг (0.18 ммоля) комплекса [PtMe₃I]₄ в 15 мл ТГФ. Растворитель удалили в вакууме, остаток хроматографировали на колонке с оксидом алюминия (2 × 15 см), используя гексан в качестве элюента. Собрали коричневую фракцию, растворитель удалили в вакууме. Получили комплекс **37** в виде красно-коричневого твердого вещества, выход 264 мг (72%). Найдено (%): C, 39.11; H, 6.25; B, 4.20. C₁₆H₂₉B₂CoPt. Вычислено (%): C, 38.66; H, 5.88; B, 4.35. Спектр ЯМР ¹H (CDCl₃): 4.03 (с, 5H, Cp), 1.88 (с, 6H, 4,5-Me, ¹⁹⁵Pt–Me_{C3B2} $J_{PtH} = 12.0$ Гц), 1.74 (с, 3H, 2-Me, ¹⁹⁵Pt–Me_{C3B2} $J_{PtH} = 12.0$ Гц), 1.09 (с, 6H, 1,3-Me), 0.96 (с, 9H, Pt–Me $J_{PtH} =$ 73.6 Гц). Спектр ЯМР ¹¹B{¹H} (CDCl₃): 15.55 (с).

Синтез СрСо(µ-η:η-1,3-С₃B₂Me₅)Ru(CO)₂Cl (38) и СрСо(µ-η:η-1,3-С₃B₂Me₅)Ru(CO)₂-Ru(CO)₂Cp (39)

Смесь 220 мг (0.48 ммоля) комплекса Tl[CpCo(1,3-C₃B₂Me₅)] (Tl[**27**]) и 121 мг (0.24 ммоля) комплекса [Ru(CO)₃Cl₂]₂ в 5 мл МеСN перемешивали при комнатной температуре в течение ночи. Растворитель удалили в вакууме, остаток экстрагировали ацетоном (2×4 мл). Ацетоновые экстракты отфильтровали, упарили и остаток хроматографировали на колонке с силикагелем (1.5×15 см), используя в качестве элюента смесь гексан/CH₂Cl₂ (2:1). Сначала собрали красную фракцию, растворитель удалили в вакууме. Получили комплекс **38** в виде красного твердого вещества, выход 41 мг (41%). Найдено (%): C, 40.39; H, 4.40; B, 4.89.

 $C_{15}H_{20}B_2ClCoO_2Ru$. Вычислено (%): C, 40.04; H, 4.45, B, 4.89. Спектр ЯМР ¹H (ацетон-*d*₆): 5.32 (c, 5H, CoCp), 4.80 (c, 5H, RuCp), 2.15 (c, 6H, 4,5-Me), 2.11 (c, 3H, 2-Me), 0.85 (c, 6H, 1,3-Me). Спектр ЯМР ¹¹B{¹H} (ацетон-*d*₆): 13.4 (уш. с). Спектр ИК (вазел. масло): v_{CO} (см⁻¹) = 2064, 2032, 1970.

При использовании в качестве элюента CH_2Cl_2 собрали вторую фиолетовую фракцию, растворитель удалили в вакууме. Получили комплекс **39** в виде фиолетового твердого вещества, выход 35 мг (47%). Найдено (%): C, 41.22; H, 3.88; B, 3.58. $C_{22}H_{25}B_2CoO_4Ru_2$. Вычислено (%): C, 41.51; H, 3.93, B, 3.46. Спектр ЯМР ¹Н (ацетон-*d*₆): 5.11 (c, 5H, CoCp), 2.19 (c, 6H, 4,5-Me), 1.60 (c, 3H, 2-Me), 1.28 (c, 6H, 1,3-Me). Спектр ЯМР ¹¹B{¹H} (ацетон-*d*₆): 19.2 (уш. с). Спектр ИК (вазел. масло): v_{CO} (см⁻¹) = 1968, 1936, 1760.

Синтез [CpCo(µ-η:η-1,3-С3В2Ме5)СоСр]РF6 (40aPF6)

Смесь 164 мг (0.35 ммоля) комплекса Tl[CpCo(1,3-C₃B₂Me₅)] (Tl[**27**]) и 131 мг (0.17 ммоля) комплекса [CpCoI₂]₂ в 5 мл MeCN перемешивали при комнатной температуре в течение 24 ч. Растворитель удалили в вакууме и остаток экстрагировали водой (2 × 4 мл). Экстракт профильтровали и добавили к фильтрату избыток водного раствора NH₄PF₆. Образовавшийся коричневый осадок отфильтровали, промыли водой, переосадили эфиром из ацетона и высушили в вакууме. Получили комплекс **40a**PF₆ в виде коричневого твердого вещества, выход 143 мг (78%). Найдено (%): C, 41.17; H, 4.62; B, 4.09. C₁₈H₂₅B₂Co₂F₆P. Вычислено (%): C, 41.11; H, 4.79, B, 4.11. Спектр ЯМР ¹H (ацетон-*d*₆): 5.06 (c, 10H, 2CoCp), 2.68 (c, 6H, 4,5-Me), 2.08 (c, 3H, 2-Me), 1.56 (c, 6H, 1,3-Me). Спектр ЯМР ¹¹B{¹H} (ацетон-*d*₆): 17.63 (c). MS (EI): M⁺ 381.2.

Синтез [CpCo(µ-η:η-1,3-С3В2Ме5)RhCp]PF6 (41aPF6)

Метод А. Аналогично синтезу **40а**PF₆, из 81 мг (0.22 ммоля) комплекса TI[CpCo(1,3-C₃B₂Me₅)] (TI[**27**]) и 70 мг (0.08 ммоля) комплекса [CpRhI₂]₂. Получили комплекс **41а**PF₆ в виде красного твердого вещества, выход 62 мг (67%). Найдено (%): C, 38.05; H, 4.00; B, 4.13. C₁₈H₂₅B₂CoF₆PRh. Вычислено (%): C, 37.94; H, 4.42, B, 3.79. Спектр ЯМР ¹H (ацетон- d_6): 5.43 (д, 0.5 Гц, 5H, CpRh), 5.21 (с, 5H, CoCp), 2.64 (с, 6H, 4,5-Me), 2.15 (с, 3H, 2-Me), 1.41 (с, 6H, 1,3-Me). Спектр ЯМР ¹¹B{¹H} (ацетон- d_6): 15.16 (с). MS (EI): M⁺ 423.2.

Метод Б. К раствору 104 мг (0.10 ммоля) комплекса **52** в 4 мл CH₃CN добавили 56 мг (0.21 ммоля) TlCp. После перемешивания в течение ночи окраска реакционной смеси меняется на ярко-красную. Растворитель удалили в вакууме и остаток экстрагировали водой. К полученному красному раствору добавили избыток водного раствора NH₄PF₆. Образовавшийся красный осадок отфильтровали, промыли водой, переосадили эфиром из ацетона и высушили в вакууме. Получили комплекс **41a**PF₆ в виде красного твердого вещества, выход 90 мг (77%).

Синтез [CpCo(µ-η:η-1,3-С₃B₂Me₅)IrCp]PF₆ (42aPF₆)

Метод А. Аналогично синтезу **40а**PF₆, из 72 мг (0.16 ммоля) комплекса TI[CpCo(1,3-C₃B₂Me₅)] (TI[**27**]) и 76 мг (0.07 ммоля) комплекса [CpIrI₂]₂. Получили комплекс **42а**PF₆ в виде оранжевого твердого вещества, выход 50 мг (51%). Найдено (%): C, 32.84; H, 3.74; B, 3.29. C₁₈H₂₅B₂CoF₆IrP. Вычислено (%): C, 32.80; H, 3.82, B, 3.28. Спектр ЯМР ¹H (ацетон- d_6): 5.48 (c, 5H, CpIr), 5.26 (c, 5H, CoCp), 2.77 (c, 6H, 4,5-Me), 2.30 (c, 3H, 2-Me), 1.54 (c, 6H, 1,3-Me). Спектр ЯМР ¹¹B{¹H} (ацетон- d_6): 8.83 (c). MS (EI): M⁺ 515.1.

Метод Б. Аналогично синтезу **41а** PF_6 (*Метод Б*) из 122 мг (0.10 ммоля) комплекса **53** и 56 мг (0.21 ммоля) TlCp. Получили комплекс **42а** PF_6 в виде оранжевого твердого вещества, выход 67 мг (51%).

Синтез [CpCo(µ-η:η-1,3-С3В2Ме5)СоСр*]РF6 (40bPF6)

Аналогично синтезу $40aPF_6$, из 115 МΓ (0.25 ммоля) комплекса Tl[CpCo(1,3-C₃B₂Me₅)] (Tl[**27**]) и 107 МΓ (0.12)ммоля) комплекса $[Cp*CoI_2]_2$. После замены противоиона на PF_6^- согласно спектру ЯМР ¹Н была получена смесь состава **40b/40a**/[CpCoCp*]⁺ (в соотношении приблизительно 1:1:1). Растворитель удалили в вакууме и остаток хроматографировали на колонке с силикагелем (0.5 × 20 см). При использовании в качестве элюента смесь Et₂O/CH₂Cl₂ (2:1) собрали первую (желтую) фракцию, содержащую [СрСоСр*]РF₆. Смесью Et₂O/CH₂Cl₂ (1.3:1) элюировали вторую (коричневую) фракцию, содержащую 40bPF₆, и, наконец, смесью Et₂O/CH₂Cl₂ (1:1.3) элюировали третью (коричневую) фракцию, содержащую 40aPF₆. Растворитель удалили в вакууме и получили 31 мг комплекса [CpCoCp*]PF₆ в виде желтого твердого вещества, 43 мг комплекса **40а**РF₆ в виде коричневого твердого вещества и комплекс **2b**PF₆ в виде коричневого твердого вещества, выход 38 мг (26%). Найдено (%): C, 46.49; H, 5.98; B, 3.55. C₂₃H₃₅B₂Co₂F₆P. Вычислено (%): C, 46.35; Н, 5.92, В, 3.63. Спектр ЯМР ¹Н (ацетон-*d*₆): 4.96 (С, 5Н, Ср), 2.42 (С, 6H, 4,5-Me), 1.86 (c, 3H, 2-Me), 1.60 (c, 15H, Cp*), 1.31 (c, 6H, 1,3-Me). Спектр ЯМР ¹¹В{¹H} (ацетон-*d*₆): 15.79 (уш. с).

Синтез [CpCo(µ-η:η-1,3-С3В2Ме5)RhCp*]PF6 (41bPF6)

Аналогично синтезу **40a**PF₆, из 154 мг (0.33 ммоля) комплекса Tl[CpCo(1,3-C₃B₂Me₅)] (Tl[**27**]) и 95 мг (0.15 ммоля) комплекса [Cp*RhCl₂]₂. Получили комплекс **41b**PF₆ в виде оранжевого твердого вещества, выход 150 мг (78%). Найдено (%): С, 43.38; Н, 5.60; В, 3.34. С₂₃H₃₅B₂CoF₆PRh. Вычислено (%): С, 43.17; Н, 5.51, В, 3.38. Спектр ЯМР ¹H (ацетон-*d*₆): 5.12 (s, 5H, CoCp), 2.30 (s, 6H, 4,5-Me), 1.85 (s, 3H, 2-Me), 1.61 (s, 15H, RhCp*), 1.09 (s, 6H, 1,3-Me). Спектр ЯМР ¹¹B{¹H} (ацетон-*d*₆): 13.80 (c). MS (EI): M⁺ 495.2.

Синтез [CpCo(µ-η:η-1,3-С₃B₂Me₅)IrCp*]PF₆ (42bPF₆)

Аналогично синтезу $40aPF_6$, ИЗ 165 МΓ (0.36)ммоля) комплекса Tl[CpCo(1,3-C₃B₂Me₅)] (Tl[**27**]) и 142 (0.18)ммоля) МΓ комплекса [Cp*IrCl₂]₂. Получили комплекс **42b**PF₆ в виде оранжево-красного твердого вещества, выход 198 мг (77%). Найдено (%): С, 38.03; Н, 4.88; В, 3.04. С₂₃Н₃₅В₂СоF₆IrP. Вычислено (%): С, 37.88; Н, 4.84, В, 2.96. Спектр ЯМР ¹Н (ацетон-d₆): 5.21 (s, 5H, CoCp), 2.43 (s, 6H, 4,5-Me), 2.01 (s, 3H, 2-Me), 1.70 (s, 15H, IrCp*), 1.24 (s, 6H, 1,3-Me). Спектр ЯМР $^{11}B{^{1}H}$ (ацетон- d_6): 8.30 (c). MS (EI): M⁺ 585.3.

Синтез [CpCo(µ-η:η-1,3-С₃B₂Me₅)RuC₆H₆]BPh₄ (43aBPh₄)

Аналогично синтезу $40aPF_6$, из 144 (0.31)ммоля) МΓ комплекса $Tl[CpCo(1,3-C_3B_2Me_5)]$ (Tl[27]) И 77 (0.15)ммоля) МΓ комплекса [(C₆H₆)RuCl₂]₂. Получили комплекс **43a**BPh₄ в виде красного твердого вещества, выход 85 мг (75%). Найдено (%): С, 68.15; Н, 6.32; В, 4.52. С₄₃Н₄₆В₃СоRu. Вычислено (%): С, 68.34; Н, 6.09, В, 4.37. Спектр ЯМР ¹Н (ацетон-d₆): 7.33 (м, 8H, м-Ph, BPh₄), 6.92 (м, 8H, o-Ph, BPh₄), 6.78 (м, 4H, п-Ph, BPh₄), 5.58 (c, 6H, RuC₆H₆), 5.01 (c, 5H, CoCp), 2.53 (c, 6H, 4,5-Me), 2.03 (c, 3H, 2-Me), 1.36 (c, 6H, 1,3-Me). Спектр ЯМР ¹¹B{¹H} (ацетон- d_6): $\delta =$ 14.62 (c, 2B, C₃B₂), -6.51 (c, 1B, BPh₄). MS (EI): M⁺ 436.7.

Синтез [CpCo(µ-η:η-1,3-С3В2Ме5)Ru(p-CH3C6H4CH(CH3)2)]PF6 (43bPF6)

Аналогично синтезу **40a**PF₆, из 120 мг (0.26 ммоля) комплекса Tl[CpCo(1,3-C₃B₂Me₅)] (Tl[**27**]) и 76 мг (0.12 ммоля) комплекса [(p-CH₃C₆H₄CH(CH₃)₂)RuCl₂]₂. Получили комплекс **43b**PF₆ в виде красного твердого вещества, выход 93 мг (62%). Найдено (%): C, 43.76; H, 5.03; B, 3.39. C₂₃H₃₄B₂CoF₆PRu. Вычислено (%): C, 43.74; H, 5.39, B, 3.49. Спектр ЯМР ¹H (ацетон- d_6): $\delta = 5.49$ (c, 4H, RuC₆H₄), 5.01 (c, 5H, CoCp), 2.69 (септет, 1H, C<u>H</u>Me₂), 2.49 (c, 6H, (CMe)_{C3B2}), 2.16 (c, 3H, <u>Me</u>C₆H₄), 2.00 (c, 3H, (CMe)_{C3B2}), 1.32 (c, 6H, BMe), 1.23 (д, J = 6.8 Гц, 6H, CH<u>Me₂</u>). Спектр ЯМР ¹¹B{¹H} (ацетон- d_6): $\delta = 14.30$ (c). MS (EI): M⁺ 492.8.

Синтез [CpCo(µ-η:η-1,3-С3В2Ме5)Ru(η⁶-С7Н8)]PF₆ (44PF₆)

Аналогично синтезу **40a**PF₆, из 220 мг (0.47 ммоля) комплекса Tl[CpCo(1,3-C₃B₂Me₅)] (Tl[**27**]) и 124 мг (0.23 ммоля) комплекса [(η^{6} -C₇H₈)RuCl₂]₂. Получили комплекс **44**PF₆ в виде красного твердого вещества, выход 93 мг (62%). Найдено (%): C, 40.58; H, 4.91; B, 3.57. C₂₀H₂₈B₂CoF₆PRu. Вычислено (%): C, 40.75; H, 4.75, B, 3.74. Спектр ЯМР ¹H (ацетон-*d*₆): δ = 6.19 (м, 2H^{3,4}, Ru(η^{6} -C₇H₈)), 5.08 (с, 5H, CoCp), 4.98 (м, 2H^{2,5}, Ru(η^{6} -C₇H₈)), 3.46 (м, 2H^{1.6}, Ru(η^{6} -C₇H₈)), 2.90 (д.т., 1H⁷_{endo}, J_{vic} = 18 Гц, Ru(η^{6} -C₇H₈)), 2.40 (с, 6H, 4,5-Me), 2.08 (с, 3H, 2-Me), 1.26 (с, 6H, 1,3-Me), 0.72 (д.т., 1H⁷_{exo}, J_{vic} = 18 Hz, Ru(η^{6} -C₇H₈)). Спектр ЯМР ¹¹B{¹H} (ацетон-*d*₆): δ = 16.04 (с). MS (EI): M⁺ 450.7.

Синтез [CpCo(µ-ŋ:ŋ-1,3-C3B2Me5)Ru(C6Me6)]PF6 (43cPF6)

Аналогично синтезу **40a**PF₆, из 142 мг (0.32 ммоля) комплекса Tl[CpCo(1,3-C₃B₂Me₅)] (Tl[**27**]) и 100 мг (0.15 ммоля) комплекса $[(C_6Me_6)RuCl_2]_2$. После замены противоиона на PF₆⁻ согласно спектру ЯМР ¹Н была получена смесь состава **43с/40a**/[CpRu(C₆Me₆)]⁺ (в соотношении приблизительно 1:1:1). Растворитель удалили в вакууме и остаток

хроматографировали на колонке с силикагелем (0.5×20 см). При использовании в качестве элюента смесь Et₂O/CH₂Cl₂ (2.5:1) собрали первую (бесцветную) фракцию, содержащую [CpRu(C₆Me₆)]PF₆. Смесью Et₂O/CH₂Cl₂ (1.5:1) элюировали вторую (красную) фракцию, содержащую **43c**PF₆, и, наконец, смесью Et₂O/CH₂Cl₂ (1:1.3) элюировали третью (коричневую) фракцию, содержащую **40a**PF₆. Растворитель удалили в вакууме и получили 41 мг комплекса [CpRu(C₆Me₆)]PF₆ в виде белого твердого вещества, 38 мг комплекса **40a**PF₆ в виде коричневого твердого вещества, 38 мг комплекса **40a**PF₆ в виде коричневого твердого вещества, 58 мг комплекса **40a**PF₆ в виде коричневого твердого вещества, 58 мг комплекса **40a**PF₆ в виде коричневого твердого вещества, 54 мг (17%). Найдено (%): C, 45.37; H, 5.91; B, 3.26. C₂₅H₃₈B₂CoF₆PRu. Вычислено (%): C, 45.04; H, 5.75, B, 3.31. Спектр ЯМР ¹H (ацетон-*d*₆): 5.01 (с, 5H, Cp), 2.29 (с, 6H, 4,5-Me), 2.04 (с, 18H, C₆Me₆), 1.79 (с, 3H, 2-Me), 1.15 (с, 6H, 1,3-Me). Спектр ЯМР ¹¹B{¹H} (ацетон-*d*₆): 13.40 (уш. с).

Синтез СрСо(µ-η:η-1,3-С₃B₂Me₅)Fe(µ-η:η-1,3-С₃B₂Me₅)CoCp (45)

Комплекс 45 чувствителен к воздуху. Все операции проводили в атмосфере аргона. К охлажденной (-78 °C) суспензии 81 мг (0.3 ммоля) комплекса FeCl₂·2TГФ в 7 мл ТГФ добавили 300 мг (0.65 ммоля) $Tl[CpCo(1,3-C_3B_2Me_5)]$ комплекса (Tl[**27**]). Реакционную смесь перемешивали 2 ч при -30 °C и при комнатной температуре в течение ночи. Растворитель удалили в вакууме и остаток хроматографировали на колонке с силикагелем (2 × 20 см), используя Et₂O в качестве элюента. Собрали зеленую фракцию, растворитель удалили в вакууме и остаток перекристаллизовали из гексана при -78 °C. Получили комплекс 45 в виде темно-зеленого твердого вещества, выход 101 мг (59%). Найдено (%): С, 55.07; H, 7.15; B, 7.43. C₂₆H₄₀B₄Co₂Fe. Вычислено (%): C, 54.83; H, 7.08, B, 7.59. Спектр ЯМР ¹Н (C₆D₆): 3.63 (с, 5H, CoCp), 2.56 (с, 6H, 4,5-Me), 2.05 (с,

3H, 2-Me), 1.81 (c, 15H, FeCp*), 1.75 (c, 6H, 1,3-Me). Спектр ЯМР ¹¹В{¹H} (C₆D₆): 18.5 (c).

Синтез СрСо(µ-η:η-1,3-С3В2Ме5)Со(µ-η:η-1,3-С3В2Ме5)СоСр (46)

Комплекс **46** чувствителен к воздуху. Все операции проводили в атмосфере аргона. К охлажденной (-78 °C) суспензии 24 мг (0.19 ммоля) комплекса CoCl₂ в 10 мл ТГФ добавили 175 мг (0.38 ммоля) комплекса TI[CpCo(1,3-C₃B₂Me₅)] (TI[**27**]). Реакционную смесь перемешивали 2 ч. при -30 °C и при комнатной температуре в течение ночи. Растворитель удалили в вакууме и остаток экстрагировали гексаном (4 × 10 мл). Экстракт фильтровали через слой целлюлозы (1.5×6 см), используя гексан в качестве элюента. Растворитель удалили в вакууме и остаток перекристаллизовали из гексана при -78 °C. Получили комплекс **46** в виде темно-коричневого твердого вещества, выход 60 мг (55%). Найдено (%): C, 55.17; H, 7.31; B, 7.29. C₂₆H₄₀B₄Co₃. Вычислено (%): C, 54.53; H, 7.04, B, 7.55. Спектр ЯМР ¹H (C₆D₆): 25.91 (с, 6H, 2-Me), -2.13 и -21.05 (с, 12H, 4,5-Ме и 1,3-Ме), -10.23 (с, 10H, CoCp). Спектр ЯМР ¹¹B{¹H} (C₆D₆): 306.37 (с).

Синтез СрСо(µ-ŋ:ŋ-1,3-С₃В₂Ме₅)Ni(µ-ŋ:ŋ-1,3-С₃В₂Ме₅)СоСр (47)

Комплекс **47** чувствителен к воздуху. Все операции проводили в атмосфере аргона. Аналогично синтезу **45**, из 56 мг (0.26 ммоля) комплекса NiBr₂·DME и 240 мг (0.52 ммоля) комплекса Tl[CpCo(1,3-C₃B₂Me₅)] (Tl[**27**]). Получили комплекс **47** в виде темно-зеленого твердого вещества, выход 100 мг (67%). Найдено (%): C, 55.01; H, 7.53; B, 7.32. C₂₆H₄₀B₄Co₂Ni. Вычислено (%): C, 54.53; H, 7.04, B, 7.55. Спектр ЯМР ¹H (C₆D₆): 23.69 (с, 3H, 2-Me), –4.16 (с, 6H, 4,5-Ме или 1,3-Ме), –10.67 (с, 10H, 2CoCp), –22.61 (с, 6H, 4,5-Ме или 1,3-Ме). В спектре ЯМР ¹¹B{¹H} (C₆D₆) не удалось

детектировать сигналы атомов бора, по-видимому, вследствие парамагнитной природы комплекса **47**. MS (EI): M⁺ 572.1, M²⁺ 286.2.

Синтез [CpCo(µ-η:η-1,3-C₃B₂Me₅)Co(µ-η:η-1,3-C₃B₂Me₅)CoCp]BF₄ (48BF₄)

К раствору 52 мг (0.09 ммоля) комплекса СрСо(μ - η : η -1,3-C₃B₂Me₅)Со(μ - η : η -1,3-C₃B₂Me₅)СоСр (**46**) в 4 мл ацетона добавили 0.5 мл 50% водного раствора HBF₄ (избыток) и перемешивали на воздухе в течение 1 часа. Добавили избыток воды, отцентрифугировали образовавшийся осадок, промыли его водой (2 × 10 мл) и переосадили эфиром из ацетона. Получили комплекс **48**BF₄ в виде черного твердого вещества, выход 49 мг (83%). Найдено (%): C, 47.25; H, 6.20; B, 8.31. C₂₆H₄₀B₅Co₃F₄. Вычислено (%): C, 47.36; H, 6.11, B, 8.20. Спектр ЯМР ¹H (ацетон-*d*₆): 4.73 (c, 10H, CoCp), 2.30 (c, 12H, 4,5-Me), 1.64 (c, 6H, 2-Me), 1.37 (c, 12H, 1,3-Me). Спектр ЯМР ¹¹B{¹H} (ацетон-*d*₆): δ = 20.58 (c, 2B, C₃B₂), -0.75 (c, 1B, BF₄).

Синтез [CpCo(µ-η:η-1,3-C₃B₂Me₅)Ni(µ-η:η-1,3-C₃B₂Me₅)CoCp]BF₄ (49BF₄)

Аналогично синтезу **48**, из 60 мг (0.1 ммоля) комплекса CpCo(μ - η : η -1,3-C₃B₂Me₅)Ni(μ - η : η -1,3-C₃B₂Me₅)CoCp (**47**) и 0.5 мл 50% водного раствора HBF₄ (избыток) в 4 мл ацетона. Получили комплекс **49**BF₄ в виде коричневого твердого вещества, выход 42 мг (70%). Найдено (%): C, 47.74; H, 6.21; B, 8.31. C₂₆H₄₀B₅Co₂F₄Ni. Вычислено (%): C, 47.37; H, 6.12, B, 8.20. Спектр ЯМР ¹H (ацетон-*d*₆): 32.30 (c, 3H, 2-Me), 4.68 (c, 6H, 4,5-Me или 1,3-Me), 2.80 (c, 10H, 2CoCp), 2.21 (c, 6H, 4,5-Me или 1,3-Me). Спектр ЯМР ¹¹B{¹H} (ацетон-*d*₆): 192,35 (c, 2B, C₃B₂), -1.16 (c, 1B, BF₄). HRMS (ES), (C₂₆H₄₀¹¹B₄Co₂Ni)⁺, m/z, вычислено: 572.1520; найдено: 572.1533.

Экспериментальная часть к Главе 3

Синтез [CpCo(µ-η:η-1,3-С₃B₂Me₅)RhCl₂]₂ (50)

К охлажденному до 0 °C раствору 467 мг (1 ммоль) комплекса CpCo(μ - η : η -1,3-C₃B₂Me₅)Rh(1,5-C₈H₁₂) (**32**) в 25 мл смеси уксусный ангидрид/ацетон (2:1) прибавили по каплям 6 мл концентрированного водного раствора HC1. Происходило сильное разогревание реакционной смеси и образование черного осадка. Его отцентрифугировали, промыли спиртом, затем эфиром и высушили в вакууме. Получили комплекс **50** в виде черного твердого вещества, выход 356 мг (69%). Найдено (%): C, 35.99; H, 4.46; B, 4.95. С₂₆H₄₀B₄Cl₄Co₂Rh₂. Вычислено (%): C, 36.26; H, 4.69, B, 5.12.

Синтез [CpCo(µ-ŋ:ŋ-1,3-С₃B₂Me₅)IrCl₂]₂ (51)

Аналогично синтезу **50**, из 660 мг комплекса CpCo(μ - η : η -1,3-C₃B₂Me₅)Ir(1,5-C₈H₁₂) (**33**) (1.18 ммоля) и 6 мл концентрированного водного раствора HCl в 25 мл смеси уксусный ангидрид/ацетон (2:1). Получили комплекс **51** в виде черного твердого вещества, выход 342 мг (55%). Найдено (%): C, 29.67; H, 3.69; B, 4.20. C₂₆H₄₀B₄Cl₄Co₂Ir₂. Вычислено (%): C, 30.00; H, 3.88, B, 4.23.

Синтез [CpCo(µ-η:η-1,3-С₃B₂Me₅)RhBr₂]₂ (52)

Аналогично синтезу **50**, из 558 мг комплекса CpCo(μ - η : η -1,3-C₃B₂Me₅)Rh(1,5-C₈H₁₂) (**32**) (1.18 ммоля) и 6 мл концентрированного водного раствора HBr в 25 мл смеси уксусный ангидрид/ацетон (2:1). Получили комплекс **52** в виде черного твердого вещества, выход 482 мг (93%). Найдено (%): C, 30.18; H, 4.01; B, 4.24; Br, 30.43. C₂₆H₄₀B₄Br₄Co₂Rh₂. Вычислено (%): C, 30.05; H, 3.88, B, 4.16; Br, 30.76.

Синтез [CpCo(µ-η:η-1,3-С3В2Ме5)IrBr2]2 (53)

Аналогично синтезу **50**, из 279 мг комплекса CpCo(μ - η : η -1,3-C₃B₂Me₅)Ir(1,5-C₈H₁₂) (**33**) (0.5 ммоля) и 6 мл концентрированного водного раствора HBr в 25 мл смеси уксусный ангидрид/ацетон (2:1). Получили комплекс **52** в виде черного твердого вещества, выход 292 мг (96%). Найдено (%): C, 25.42; H, 3.23; B, 3.56; Br, 25.91. C₂₆H₄₀B₄Br₄Co₂Ir₂. Вычислено (%): C, 25.64; H, 3.31, B, 3.55; Br, 26.25.

Синтез [CpCo(µ-η:η-1,3-C₃B₂Me₅)Rh(µ-Cl)₃Rh(µ-η:η-1,3-C₃B₂Me₅)CoCp]BF₄ (54BF₄)

Смесь 20 мг (0.023 ммоля) комплекса [CpCo(μ - η : η -1,3-C₃B₂Me₅)RhCl₂]₂ (**50**) и 6 мг (0.023 ммоля) комплекса TlBF₄ в 5 мл CH₂Cl₂ перемешивали при комнатной температуре в течение 12 ч и отцентрифугировали образовавшийся осадок. К полученному зеленому раствору добавили 20 мл Et₂O, образовавшийся осадок отфильтровали, переосадили эфиром из CH₂Cl₂, отцентрифугировали и высушили в вакууме. Получили комплекс **54**BF₄ в виде черного твердого вещества, выход 16 мг (83%). Найдено (%): C, 34.01; H, 4.27; B, 5.80. C₂₆H₄₀B₅Cl₃Co₂F₄Rh₂. Вычислено (%): C, 34.22; H, 4.42, B, 5.92. Спектр ЯМР ¹H (ацетон-*d*₆): 5.39 (c, 5H, Cp), 2.24 (c, 6H, CMe), 1.47 (c, 3H, CMe), 1.42 (c, 6H, BMe). Спектр ЯМР ¹¹B{¹H} (ацетон-*d*₆): 21.84 (c, 4B, 2C₃B₂), –0.99 (c, 1B, BF₄).

Синтез [CpCo(µ-η:η-1,3-C3B2Me5)Ir(µ-Cl)3Ir(µ-η:η-1,3-C3B2Me5)CoCp]BF4 (55BF4)

Аналогично синтезу **54**BF₄, из 33 мг (0.03 ммоля) комплекса [CpCo(µ-η:η-1,3-C₃B₂Me₅)IrCl₂]₂ (**51**) и 9 мг (0.030 ммоля) комплекса TlBF₄ в 5 мл CH₂Cl₂. Получили комплекс **55**BF₄ в виде черного твердого вещества, выход 31 мг (73%). Найдено (%): C, 28.39; H, 3.41; B, 4.73. $C_{26}H_{40}B_5Cl_3Co_2F_4Ir_2$. Вычислено (%): C, 28.62; H, 3.69, B, 4.95. Спектр ЯМР ¹H (ацетон-*d*₆): 5.36 (c, 5H, Cp), 2.38 (c, 6H, CMe), 1.65 (c, 3H, CMe), 1.51 (c, 6H, BMe). Спектр ЯМР ¹¹B{¹H} (ацетон-*d*₆): 13.81 (c, 4B, 2C₃B₂), -0.98 (c, 1B, BF₄).

Синтез [CpCo(µ-η:η-1,3-C₃B₂Me₅)Rh(µ-Br)₃Rh(µ-η:η-1,3-C₃B₂Me₅)CoCp]BF₄ (56BF₄)

Аналогично синтезу **54**BF₄, из 20 мг (0.019 ммоля) комплекса [CpCo(μ - η : η -1,3-C₃B₂Me₅)RhBr₂]₂ (**52**) и 6 мг (0.023 ммоля) комплекса TlBF₄. Получили комплекс **56**BF₄ в виде черного твердого вещества, выход 15 мг (82%). Найдено (%): C, 30.01; H, 3.96; B, 5.29. C₂₆H₄₀B₅Br₃Co₂F₄Rh₂. Вычислено (%): C, 29.85; H, 3.85, B, 5.17. Спектр ЯМР ¹H (ацетон-*d*₆): 5.38 (c, 5H, Cp), 2.32 (c, 6H, CMe), 1.57 (c, 3H, CMe), 1.49 (c, 6H, BMe). Спектр ЯМР ¹¹B{¹H} (ацетон-*d*₆): 21.71 (c, 4B, 2C₃B₂), -0.95 (c, 1B, BF₄.

Синтез [CpCo(µ-η:η-1,3-C₃B₂Me₅)Ir(µ-Br)₃Ir(µ-η:η-1,3-C₃B₂Me₅)CoCp]BF₄ (57BF₄)

Аналогично синтезу **54**BF₄, из 37 мг (0.025 ммоля) комплекса [CpCo(μ - η : η -1,3-C₃B₂Me₅)IrBr₂]₂ (**53**) и 8 мг (0.027 ммоля) комплекса TlBF₄. Получили комплекс **57**BF₄ в виде черного твердого вещества, выход 24 мг (79%). Найдено (%): C, 25.67; H, 3.45; B, 4.69. C₂₆H₄₀B₅Br₃Co₂F₄Ir₂. Вычислено (%): C, 25.50; H, 3.29, B, 4.41. Спектр ЯМР ¹H (ацетон-*d*₆): 5.36 (c, 5H, Cp), 2.42 (c, 6H, CMe), 1.70 (c, 3H, CMe), 1.54 (c, 6H, BMe). Спектр ЯМР ¹¹B{¹H} (ацетон-*d*₆): 14.05 (c, 4B, 2C₃B₂), -0.90 (c, 1B, BF₄).

Синтез [CpCo(µ-η:η-1,3-С₃B₂Me₅)Rh(ДМСО)Cl₂ (58)

К суспензии 60 мг (0.07 ммоля) комплекса [CpCo(µ-η:η-1,3-C₃B₂Me₅)RhCl₂]₂ (**50**) в 20 мл CH₂Cl₂ добавили 0.3 мл ДМСО (избыток) и перемешивали 24 ч при комнатной температуре. Растворитель удалили в вакууме. Получили комплекс **58** в виде черного кристаллического вещества, выход 62 мг (91%). Найдено (%): C, 35.30; H, 5.10; B, 4.13. $C_{15}H_{26}B_2Cl_2CoORhS$. Вычислено (%): C, 35.41; H, 5.15, B, 4.25. Спектр ЯМР ¹H (ацетон-*d*₆): 5.24 (д, 0.5 Гц, 5H, Cp), 2.19 (с, 6H, CMe), 2.08 (с, 6H, Me₂SO), 1.40 (с, 6H, BMe), 1.38 (с, 3H, CMe). Спектр ЯМР ¹¹B{¹H} (ацетон-*d*₆): 21.69 (с).

Синтез [CpCo(µ-η:η-1,3-С3В2Ме5)Іг(ДМСО)Сl2 (59)

Аналогично синтезу **58**, из 42 мг (0.04 ммоля) комплекса [CpCo(µ-η:η-1,3-C₃B₂Me₅)IrCl₂]₂ (**51**) и 0.3 мл ДМСО (избыток) в 20 мл CH₂Cl₂. Получили комплекс **59** в виде черного кристаллического вещества, выход 43 мг (90%). Найдено (%): C, 29.73; H, 4.36; B, 3.45. C₁₅H₂₆B₂Cl₂CoIrOS. Вычислено (%): C, 30.12; H, 4.38, B, 3.61. Спектр ЯМР ¹H (ацетон-*d*₆): 5.22 (c, 5H, Cp), 2.31 (c, 6H, 4,5-Me), 2.08 (c, 6H, Me₂SO), 1.59 (c, 3H, 2-Me), 1.43 (c, 6H, 1,3-Me). Спектр ЯМР ¹¹B{¹H} (ацетон-*d*₆): 15.45 (c).

Синтез [CpCo(µ-η:η-1,3-С₃B₂Me₅)Rh(ДМСО)Br₂ (60)

Аналогично синтезу **58**, из 32 мг (0.03 ммоля) комплекса [CpCo(µ-η:η-1,3-C₃B₂Me₅)RhBr₂]₂ (**52**) и 0.3 мл ДМСО (избыток) в 20 мл CH₂Cl₂. Получили комплекс **60** в виде черного кристаллического вещества, выход 33 мг (97%). Найдено (%): C, 30.20; H, 4.45; B, 3.68. C₁₅H₂₆B₂Br₂CoORhS. Вычислено (%): C, 30.14; H, 4.38, B, 3.62. Спектр ЯМР ¹H (ДМСО-*d*₆) 5.28 (c, 5H, Cp), 2.32 (c, 6H, CMe), 1.51 (c, 6H, BMe), 1.48 (c, 3H, CMe). Спектр ЯМР ¹¹B{¹H} (ДМСО-*d*₆) 21.98 (c).

Синтез [CpCo(µ-η:η-1,3-С₃B₂Me₅)Ir(ДМСО)Br₂ (61)

Аналогично синтезу **58**, из 35 мг (0.024 ммоля) комплекса [CpCo(µ-η:η-1,3-C₃B₂Me₅)IrBr₂]₂ (**53**) и 0.3 мл ДМСО (избыток) в 20 мл CH₂Cl₂. Получили комплекс **61** в виде темно-коричневого мелкокристаллического вещества, выход 43 мг (96%). Найдено (%): C, 26.35; H, 3.97; B, 3.24. C₁₅H₂₆B₂Br₂CoIrOS. Вычислено (%): C, 26.22; H, 3.81, B, 3.15. Спектр ЯМР ¹H (ДМСО-*d*₆) 5.27 (c, 5H, Cp), 2.41 (c, 6H, CMe), 1.61 (c, 3H, CMe), 1.53 (c, 6H, BMe). Спектр ЯМР ¹¹B{¹H} (ДМСО-*d*₆) 16.18 (c).

Синтез [CpCo(µ-η:η-1,3-С₃B₂Me₅)Rh(PPh₃)Cl₂ (62)

Смесь 40 мг (0.0465 ммоля) комплекса [CpCo(μ - η : η -1,3-C₃B₂Me₅)RhCl₂]₂ (**50**) и 24 мг (0.093 ммоля) PPh₃ в 2 мл CH₂Cl₂ перемешивали в течение 12 ч при комнатной температуре. Раствор отфильтровали, упарили до небольшого объема и добавили 20 мл петролейного эфира. Выпавший осадок отфильтровали, переосадили петролейным эфиром из CH₂Cl₂ и сушили в вакууме. Получили комплекс **62** в виде темно-зеленого твердого вещества, выход 54 мг (83%). Найдено (%): C, 53.90; H, 5.22; B, 3.04. C₃₁H₃₅B₂Cl₂CoPRh. Вычислено (%): C, 53.73; H, 5.09, B, 3.12. Спектр ЯМР ¹H (ацетон-*d*₆): 7.59–7.68 (м, 6H, PPh₃), 7.37–7.43 (м, 6H, PPh₃), 7.05–7.15 (м, 3H, PPh₃), 4.68 (с, 5H, CpCo), 2.35 (д, 6H, ³J_{RhH} = 68.4 Гц, CMe), 1.20 (д, 6H, ³J_{RhH} = 0.96 Гц, BMe), 0.58 (с, 3H, CMe). Спектр ЯМР ¹¹B{¹H} (ацетон-*d*₆): 21.27 (с). Спектр ЯМР ³¹P{¹H} (ацетон-*d*₆): 30.34 (д, ¹J_{RhP} = 396.0 Гц).

Синтез [CpCo(µ-η:η-1,3-С3В2Ме5)Ir(PPh3)Cl2 (63)

Аналогично синтезу **62**, из 63 мг (0.06 ммоля) комплекса [CpCo(µ-η:η-1,3-C₃B₂Me₅)IrCl₂]₂ (**51**) и 30 мг (0.12 ммоля) PPh₃ в 2 мл CH₂Cl₂. Получили комплекс **63** в виде темно-коричневого твердого вещества, выход 90 мг (91%). Найдено (%): C, 47.51; H, 4.45; B, 2.86. C₃₁H₃₅B₂Cl₂CoIrP. Вычислено (%): C, 47.60; H, 4.51, B, 2.76. Спектр ЯМР ¹Н (ацетон-*d*₆): 7.56–7.63 (м, 6H, PPh₃), 7.47–7.39 (м, 9H, PPh₃), , 4.70 (с, 5H, Cp), 2.54 (с, 6H, CMe), 1.14 (с, 6H, BMe), 0.85 (с, 3H, CMe). Спектр ЯМР ¹¹B{¹H} (ацетон- d_6): 15.81 (с). Спектр ЯМР ³¹Р{¹H} (ацетон- d_6): 0.41 (с).

Синтез [CpCo(µ-η:η-1,3-С3В2Ме5)Rh(PPh3)Br2 (64)

Аналогично синтезу **62**, из 70 мг (0.067 ммоля) комплекса [CpCo(μ - η : η -1,3-C₃B₂Me₅)RhBr₂]₂ (**52**) и 33 мг (0.126 ммоля) PPh₃ в 2 мл CH₂Cl₂. Получили комплекс **64** в виде темно-зеленого твердого вещества, выход 90 мг (92 %). Найдено (%): C, 47.71; H, 4.65; B, 2.86. C₃₁H₃₅B₂Br₂CoPRh. Вычислено (%): C, 47.62; H, 4.51, B, 2.77. Спектр ЯМР ¹H (ацетон-*d*₆): 7.58–7.68 (м, 6H, PPh₃), 7.37–7.43 (м, 6H, PPh₃), 7.05–7.15 (м, 3H, PPh₃), 4.61 (с, 5H, CpCo), 2.47 (д, 6H, CMe, ³J_{RhH} = 1.32 Гц), 1.20 (д, 6H, BMe, ³J_{RhH} = 0.96 Гц), 0.74 (с, 3H, CMe). Спектр ЯМР ¹¹B{¹H} (ацетон-*d*₆): 21.16 (с). Спектр ЯМР ³¹P{¹H} (ацетон-*d*₆): 35.04 (d, ¹J_{RhP} = 299.9 Гц).

Синтез [CpCo(µ-η:η-1,3-С₃B₂Me₅)Ir(PPh₃)Br₂ (65)

Аналогично синтезу **62**, из 35 мг (0.028 ммоля) комплекса [CpCo(μ - η : η -1,3-C₃B₂Me₅)IrBr₂]₂ (**53**) и 15 мг (0.057 ммоля) PPh₃ в 2 мл CH₂Cl₂. Получили комплекс **65** в виде темно-коричневого твердого вещества, выход 43 мг (86%). Найдено (%): C, 42.27; H, 3.91; B, 2.75. C₃₁H₃₅B₂Br₂CoIrP. Вычислено (%): C, 42.74; H, 4.05, B, 2.48. Спектр ЯМР ¹H (ацетон-*d*₆): 7.60–7.70 (м, 6H, PPh₃), 7.47–7.39 (м, 6H, PPh₃), 7. 14–7.04 (м, 3H, PPh₃), 4.65 (с, 5H, CpCo), 2.65 (с, 6H, CMe), 1.24 (с, 6H, BMe), 0.94 (с, 3H, CMe). Спектр ЯМР ¹¹B{¹H} (ацетон-*d*₆): 16.34 (с). Спектр ЯМР ³¹P{¹H} (ацетон-*d*₆): -1.03 (с).

Синтез [CpCo(µ-η:η-1,3-С₃B₂Me₅)Rh(CO)Br₂ (66)

Оксид углерода пропускали через суспензию 40 мг (0.038 ммоля) комплекса [CpCo(μ - η : η -1,3-C₃B₂Me₅)RhBr₂]₂ (**52**) в 5 мл TГФ в течение 8 ч при комнатной температуре. Полученный раствор зеленого цвета профильтровали и добавили 20 мл петролейного эфира. Образовавшийся осадок отфильтровали, промыли петролейным эфиром и высушили в вакууме. Получили комплекс **66** в виде темно-зеленого твердого вещества, выход 31 мг (74%). Комплекс **66** при стоянии медленно (в течение около 2 недель) теряет CO, превращаясь обратно в комплекс **52**. Найдено (%): C, 30.31; H, 3.70; B, 3.94. C₁₄H₂₀B₂CoORh. Вычислено (%): C, 30.71; H, 3.68, B, 3.95. Спектр ЯМР ¹H (ацетон-*d*₆): 5.43 (с, 5H, CpCo), 2.43 (с, 6H, CMe), 1.74 (с, 3H, CMe), 1.58 (с, 6H, BMe). Спектр ЯМР ¹¹B{¹H} (ацетон-*d*₆): 22.79 (с). Спектр ИК (вазел. масло): v_{CO} (см⁻¹) = 2056.

Синтез [CpCo(µ-η:η-1,3-С₃B₂Me₅)Ir(CO)Br₂ (67)

Аналогично синтезу **66**, из 55 мг (0.04 ммоля) комплекса [CpCo(μ - η : η -1,3-C₃B₂Me₅)IrBr₂]₂ (**53**) и оксида углерода в 5 мл ТГФ. Получили комплекс **67** в виде темно-зеленого твердого вещества, выход 39 мг (75%). Комплекс **67** при стоянии медленно (в течение около 2 недель) теряет CO, превращаясь обратно в комплекс **53**. Найдено (%): C, 26.14; H, 3.03; B, 3.40. C₁₄H₂₀B₂CoIrO. Вычислено (%): C, 26.40; H, 3.17, B, 3.39. Спектр ЯМР ¹H (ацетон-*d*₆): 5.46 (c, 5H, CpCo), 2.51 (c, 6H, CMe), 1.88 (c, 3H, CMe), 1.58 (c, 6H, BMe). Спектр ЯМР ¹¹B{¹H} (ацетон-*d*₆): 17.30 (c). Спектр ИК (вазел. масло): v_{CO} (cm⁻¹) = 2054.

Синтез СрСо(µ-η:η-1,3-С3В2Ме5)Rh(С6H6)](BF4)2 (68a(BF4)2)

Смесь 52 мг (0.05 ммоля) комплекса [CpCo(µ-η:η-1,3-C₃B₂Me₅)RhBr₂]₂ (**52**) и 59 мг (0.21 ммоля) комплекса AgBF₄·3(диоксан) в 2 мл нитрометана перемешивали в течение 1 ч при комнатной температуре. К полученной

суспензии добавили 1 мл (избыток) бензола и перемешивали в течение 24 ч при комнатной температуре. Реакционную смесь центрифугировали от AgI и добавили Et₂O. Выпавший осадок отфильтровали и переосадили Et₂O из ацетона. Образовавшийся осадок сушили в вакууме. Получили комплекс **68a**(BF₄)₂ в виде коричневого твердого вещества, выход 49 мг (80%). Найдено (%): C, 37.49; H, 4.50; B, 7.12. C₁₉H₂₆B₄CoF₈Rh. Вычислено (%): C, 37.32; H, 4.29, B, 7.07. Спектр ЯМР ¹H (ацетон-*d*₆): 7.30 (c, 6H, C₆H₆), 5.91 (c, 5H, Cp), 2.96 (c, 6H, CMe), 2.46 (c, 3H, CMe), 1.78 (c, 6H, BMe). Спектр ЯМР ¹¹B{¹H} (ацетон-*d*₆): 21.50 (c, 2B, C₃B₂), -0.86 (c, 2B, BF₄). HRMS (ES), (C₁₉H₂₆¹¹B₂Co¹⁰³Rh)²⁺, m/z, вычислено: 219.0262; найдено: 219.0304.

Синтез СрСо(µ-η:η-1,3-С₃B₂Me₅)Rh(1,2,4,5-С₆Me₄H₂)](BF₄)₂ (68b(BF₄)₂)

Аналогично синтезу 68a(BF₄)₂, из 73 мг (0.07 ммоля) комплекса [CpCo(µ- $\eta:\eta-1,3-C_{3}B_{2}Me_{5})RhBr_{2}]_{2}$ (52),80 (0.29)МΓ ммоля) комплекса AgBF₄·3(диоксан) и 50 мг (0.37 ммоля, избыток) дурола в 2 мл нитрометана. Получили комплекс $68b(BF_4)_2$ в виде коричневого твердого вещества, выход 78 мг (82%). Найдено (%): С, 41.49; Н, 5.32; В, 6.55. C₂₃H₃₄B₄CoF₈Rh. Вычислено (%): C, 41.38; H, 5.13, B, 6.48. Спектр ЯМР ¹H (ацетон-*d*₆): 6.89 (с, 2H, C₆<u>H</u>₂Me₄), 5.90 (с, 5H, Cp), 2.74 (с, 6H, CMe), 2.30 (с, 12Н, С₆Н₂Ме₄), 2.24 (с, 3Н, СМе), 1.56 (с, 6Н, ВМе). Спектр ЯМР ¹¹B{¹H} (ацетон- d_6): 19.88 (c, 2B, C₃B₂), -0.89 (c, 2B, BF₄). HRMS (ES), (C₂₃H₃₄¹¹B₂Co¹⁰³Rh)²⁺, m/z, вычислено: 247.0618; найдено: 247.0617.

Синтез СрСо(µ-η:η-1,3-С3В2Ме5)Rh(С6Ме6)](BF4)2 (68с(BF4)2)

Аналогично синтезу **68**а(BF₄)₂, из 78 мг (0.075 ммоля) комплекса [CpCo(μ - η : η -1,3-C₃B₂Me₅)RhBr₂]₂ (**52**), 86 мг (0.304 ммоля) комплекса AgBF₄·3(диоксан) и 75 мг (0.45 ммоль, избыток) C₆Me₆ в 3 мл нитрометана. Перемешивали в течение 48 ч при комнатной температуре. Получили комплекс **68с**(BF₄)₂ в виде коричневого твердого вещества, выход 76 мг (73%). Найдено (%): C, 43.39; H, 5.43; B, 6.47. $C_{25}H_{38}B_4CoF_8Rh$. Вычислено (%): C, 43.17; H, 5.51, B, 6.22. Спектр ЯМР ¹Н (ацетон-*d*₆): 5.88 (c, 5H, Cp), 2.61 (c, 6H, CMe), 2.28 (c, 18H, C₆Me₆), 2.11 (c, 3H, CMe), 1.44 (c, 6H, BMe). Спектр ЯМР ¹¹B{¹H} (ацетон-*d*₆): 18.99 (c, 2B, C₃B₂), -0.99 (c, 2B, BF₄). HRMS (ES), $(C_{25}H_{38}^{11}B_2Co^{103}Rh)^{2+}$, m/z, вычислено: 261.0774; найдено: 261.0783.

Синтез СрСо(µ-η:η-1,3-С3В2Ме5)Ir(С6Н6)](ВF4)2 (69а(ВF4)2)

Аналогично синтезу **68a**(BF₄)₂, из 61 мг (0.05 ммоля) комплекса [CpCo(μ - η : η -1,3-C₃B₂Me₅)IrBr₂]₂ (**53**), 59 мг (0.21 ммоля) AgBF₄·3(диоксан) и 1 мл (избыток) C₆H₆ в 2 мл нитрометана. Получили комплекс **69a**(BF₄)₂ в виде красного твердого вещества, выход 60 мг (85%). Найдено (%): C, 32.69; H, 3.91; B, 6.35. C₁₉H₂₆B₄CoF₈Ir. Вычислено (%): C, 32.47; H, 3.73, B, 6.27. Спектр ЯМР ¹H (ацетон-*d*₆): 7.38 (c, 6H, C₆H₆), 5.86 (c, 5H, Cp), 3.03 (c, 6H, CMe), 2.53 (c, 3H, CMe), 1.82 (c, 6H, BMe). Спектр ЯМР ¹¹B{¹H} (ацетон*d*₆): 13.28 (c, 2B, C₃B₂), -0.70 (c, 2B, BF₄). HRMS (ES), (C₁₉H₂₆¹¹B₂Co¹⁹³Ir)²⁺, m/z, вычислено: 264.0633; найдено: 264.0591.

Синтез СрСо(µ-η:η-1,3-С₃В₂Ме₅)Ir(1,2,4,5-С₆Ме₄H₂)](BF₄)₂ (69b(BF₄)₂)

Аналогично синтезу **68a**(BF₄)₂, из 65 мг (0.053 ммоля) комплекса [CpCo(μ - η : η -1,3-C₃B₂Me₅)IrBr₂]₂ (**53**), 61 мг (0.216 ммоля) комплекса AgBF₄·3(диоксан) и 50 мг (0.37 ммоля, избыток) дурола в 2 мл нитрометана. Получили комплекс **69b**(BF₄)₂ в виде красного твердого вещества, выход 63 мг (79%). Найдено (%): C, 36.85; H, 4.77; B, 5.93. C₂₃H₃₄B₄CoF₈Ir. Вычислено (%): C, 36.40; H, 4.52, B, 5.81. Спектр ЯМР ¹H (ацетон-*d*₆): 7.11 (c, 2H, C₆H₂Me₄), 5.87 (c, 5H, Cp), 2.81 (c, 6H, CMe), 2.39 (c, 12H, C₆H₂Me₄), 2.34 (c, 3H, CMe), 1.61 (c, 6H, BMe). Спектр ЯМР ¹¹B{¹H} (ацетон- d_6): 12.01 (с, 2B, C₃B₂), -0.81 (с, 2B, BF₄). C₂₃H₃₄B₄CoF₈Ir. HRMS (ES), (C₂₃H₃₄¹¹B₂Co¹⁹³Ir)²⁺, m/z, вычислено: 292.0904; найдено: 292.0898.

Синтез СрСо(µ-η:η-1,3-С3В2Ме5)Ir(С6Ме6)](ВF4)2 (69с(ВF4)2)

Аналогично синтезу **68**a(BF₄)₂, из 50 мг (0.041 ммоля) комплекса [CpCo(µ- $\eta:\eta-1,3-C_3B_2Me_5)IrBr_2]_2$ (53), 61 (0.187 ммоля) МΓ комплекса AgBF₄·3(диоксан) и 50 мг (0.30 ммоля, избыток) С₆Ме₆ в 2 мл нитрометана. Получили комплекс **69b**(BF₄)₂ в виде красного твердого вещества, выход 63 мг (79%). Найдено (%): С, 38.34; Н, 4.97; В, 5.73. С₂₅Н₃₈В₄F₈CoIr. Вычислено (%): C, 38.16; H, 4.87, B, 5.60. Спектр ЯМР ¹Н (ацетон-*d*₆): 5.88 (c, 5H, Cp), 2.67 (c, 6H, CMe), 2.36 (c, 18H, C₆Me₆), 2.18 (c, 3H, CMe), 1.50 (c, 6H, BMe). Спектр ЯМР ¹¹B{¹H} (ацетон- d_6): 11.19 (c, 2B, C₃B₂), -0.82 (c, 2B, BF₄). HRMS (ES), $(C_{25}H_{38}^{11}B_2Co^{193}Ir)^{2+}$, m/z, вычислено: 306.1061; найдено: 306.1050.

Синтез СрСо(µ-η:η-1,3-С3В2Ме5)Rh(MeCN)3](BF4)2 (70(BF4)2)

Комплекс 70(BF₄)₂ гигроскопичен. Все операции проводили в атмосфере (0.038)ммоля) комплекса аргона. Смесь 39 [CpCo(u-n:n-1,3-МΓ C₃B₂Me₅)RhBr₂]₂ (**52**) и 43 мг (0.152 ммоля) комплекса AgBF₄·3(диоксан) в 2 мл MeCN перемешивали в течение 1 ч при комнатной температуре, реакционную смесь отцентрифугировали от осадка AgI. К полученному раствору добавили Et₂O, отфильтровали образовавшийся осадок и сушили в вакууме. Получили комплекс **70**(BF₄)₂ в виде темно-зеленого твердого вещества, выход 41 мг (82%). Найдено (%): С, 34.70; Н, 4.57; В, 6.49. С₁₉Н₂₉В₄СоF₈N₃Rh. Вычислено (%): С, 34.76; Н, 4.45, В, 6.59. Спектр ЯМР ¹H (CD₃CN): 5.43 (c, 5H, Cp), 2.41 (c, 6H, CMe), 2.00 (c, 9H, 3MeCN), 1.67 (с, 3H, CMe), 1.57 (с, 6H, BMe). Спектр ЯМР ¹¹В{¹H} (CD₃CN): 25.28 (с, 2B,
C₃B₂), -1.18 (с, 2B, BF₄). HRMS (ES), (C₁₉H₂₉¹¹B₂CoN₃¹⁰³Rh)²⁺, m/z, вычислено: 241.5467; найдено: 241.5481.

Синтез СрСо(µ-η:η-1,3-С3В2Ме5)Ir(MeCN)3](BF4)2 (71(BF4)2)

Комплекс **71**(BF₄)₂ гигроскопичен. Все операции проводили в атмосфере аргона. Аналогично синтезу **70**(BF₄)₂, из 50 мг (0.037 ммоля) комплекса [CpCo(μ - η : η -1,3-C₃B₂Me₅)IrBr₂]₂ (**53**) и 43 мг (0.152 ммоля) комплекса AgBF₄·3(диоксан) в 2 мл MeCN. Получили комплекс **71**(BF₄)₂ в виде темно-фиолетового твердого вещества, выход 49 мг (88%). Найдено (%): C, 30.71; H, 3.68; B, 5.59. C₁₉H₂₉B₄CoF₈IrN₃. Вычислено (%): C, 30.60; H, 3.92, B, 5.80. Спектр ЯМР ¹H (CD₃CN): 5.37 (c, 5H, Cp), 2.49 (c, 6H, CMe), 2.00 (c, 9H, 3MeCN), 1.83 (c, 3H, CMe), 1.56 (c, 6H, BMe). Спектр ЯМР ¹¹B{¹H} (CD₃CN): 16.60 (c, 2B, C₃B₂), -1.17 (c, 2B, BF₄). HRMS (ES), (C₁₉H₂₉¹¹B₂Co¹⁹³IrN₃)²⁺, m/z, вычислено: 286.5755; найдено: 286.5773.

Синтез СрСо(µ-η:η-1,3-С₃B₂Me₅)Rh(η-7,8-С₂B₉H₁₁) (72)

К раствору 105 мг (0.1 ммоля) комплекса [CpCo(µ-ŋ:ŋ-1,3-C₃B₂Me₅)RhBr₂]₂ (52) в 5 мл ацетонитрила добавили 115 мг (0.21 ммоля) комплекса TI[TIC₂B₉H₁₁] и реакционную смесь перемешивали 48 ч при комнатной температуре. Образовавшийся оранжево-красный раствор отцентрифугировали ОТ осадка И упарили досуха. Остаток хроматографировали на колонке с силикагелем (1 × 8 см), используя в качестве элюента смесь (петролейный эфир)/CH₂Cl₂ (1:2). Собрали красную фракцию, растворитель удалили в вакууме. Получили комплекс 72 в виде красного мелкокристаллического вещества, выход 70 мг (70%). Найдено (%): C, 35.38; H, 6.01; B, 24.59. C₁₅H₃₁B₁₁CoRh. Вычислено (%): C, 36.61; H, 6.35, B, 24.16. Спектр ЯМР ¹Н (ацетон-*d*₆): 4.71 (с, 5H, Cp), 3.18 (с, 2H, карб. CH), 2.36 (с, 6H, CMe), 2.01 (с, 6H, BMe), 1.19 (с, 3H, CMe).

Спектр ЯМР ¹¹B{¹H} (ацетон- d_6): 14.46 (c, 2B, C₃B₂), 8.73 (c, 1B), 1.52 (c, 1B), -2.65 (c, 2B), -8.14 (c, 2B), -18.28 (c, 2B), -23.21 (c, 1B).

Синтез СрСо(µ-η:η-1,3-С3В2Ме5)Іг(η-7,8-С2В9Н11) (73)

Аналогично синтезу **72**, из 51 мг (0.04 ммоля) комплекса [CpCo(μ - η : η -1,3-C₃B₂Me₅)IrBr₂]₂ (**53**) и 45 мг (0.08 ммоля) комплекса Tl[TlC₂B₉H₁₁] в 5 мл ацетонитрила. Получили комплекс **73** в виде красного мелкокристаллического вещества, выход 32 мг (65%). Найдено (%): C, 31.40; H, 5.59; B, 20.05. C₁₅H₃₁B₁₁CoIr. Вычислено (%): C, 30.98; H, 5.37, B, 20.45. Спектр ЯМР ¹H (ацетон-*d*₆): 5.18 (c, 5H, Cp), 3.73 (c, 2H, карб. CH), 2.54 (c, 6H, CMe), 2.21 (c, 6H, BMe), 1.34 (c, 3H, CMe). Спектр ЯМР ¹¹B{¹H} (ацетон-*d*₆): 9.46 (c, 2B, C₃B₂), 0.02 (c, 1B), -2.46 (c, 1B), -9.13 (c, 2B), -12.68 (c, 2B), -22.49 (c, 2B), -26.60 (c, 1B).

Синтез [CpCo(µ-ŋ:ŋ-1,3-C₃B₂Me₅)Rh(ŋ-9-Me₂S-7,8-C₂B₉H₁₀)]PF₆ (74PF₆)

Смесь 104 мг (0.1 ммоля) комплекса [CpCo(u-n:n-1,3-C₃B₂Me₅)RhBr₂]₂ (**52**) и 84 мг (0.21 ммоля) комплекса Tl[9-SMe₂-7,8-C₂B₉H₁₀] в 5 мл MeCN перемешивали В течение 12 Ч при комнатной темпереатуре. Образовавшуюся коричневую реакционную смесь отцентрифугировали от осадка и полученный раствор упарили досуха. Остаток растворили в 6 мл смеси CH₂Cl₂/CHCl₃ (2:1), добавили 3 мл MeI (избыток) и перемешивали 48 часов, затем реакционную смесь упарили досуха. Остаток растворили в 3 мл ацетона и добавили избыток раствора NH_4PF_6 в смеси вода/ацетон (1:2). Ацетон упарили, коричневый осадок отфильтровали, промыли водой, растворили в 3 мл ацетона и высадили 40 мл эфира. Выпавший осадок отфильтровали и высушили в вакууме. Получили комплекс 74PF₆ в виде коричневого мелкокристаллического вещества, выход 110 мг (77%). Найдено (%): С, 29.25; Н, 5.31; В, 17.31. С₁₇Н₃₆В₁₁СоF₆PRhS. Вычислено (%): С, 29.24; Н, 5.20, В, 17.03. Спектр ЯМР ¹Н (ацетон- d_6): 5.35 (с, 5H, Cp), 4.38 (с, 1H, карб. CH), 3.81 (с, 1H, карб. CH), 2.74 (с, 6H, CMe), 2.66 (с, 3H, SMe₂), 2.56 (с, 3H, SMe₂), 2.29 (с, 3H, CMe), 1.40 (д, J = 25 Гц, 6H, BMe). Спектр ЯМР ¹¹В (ацетон- d_6): 14.70 (с, 2B, C₃B₂), 3.92 (д, J = 101 Гц, 1B), -1.32, -1.64 (два перекрывающихся дублета, J = 47 Гц, 2B), -3.27 (с, 1B, BSMe₂), -7.83 (д, J = 96 Гц, 1B), -11.19 (д, J = 94 Гц, 1B), -18.61 (д, J = 102Гц, 1B), -20.28 (д, J = 103 Гц, 1B), -23.10 (д, J = 101 Гц, 1B). HRMS (ES), [C₁₇H₃₆¹⁰B₂¹¹B₉SCo¹⁰³Rh]⁺, m/z, вычислено: 553.2021; найдено: 553.2030.

Синтез [CpCo(µ-η:η-1,3-С3В2Ме5)Ir(η-9-Ме2S-7,8-С2В9Н10)]PF6 (75PF6)

Аналогично синтезу **75**PF₆, из 121 мг (0.1 ммоля) комплекса [CpCo(μ - η : η -1,3-C₃B₂Me₅)IrBr₂]₂ (**53**) и 80 мг (0.2 ммоля) комплекса Tl[9-SMe₂-7,8-C₂B₉H₁₀] в 5 мл MeCN. Получили комплекс **75**PF₆ в виде коричневого мелкокристаллического вещества, выход 112 мг (74%). Найдено (%): C, 26.22; H, 4.80; B, 14.90. C₁₇H₃₆B₁₁CoF₆IrPS. Вычислено (%): C, 25.93; H, 4.61, B, 15.10. Спектр ЯМР ¹H (ацетон-*d*₆): 5.42 (с, 5H, Cp), 4.80 (с, 1H, карб. CH), 4.05 (с, 1H, карб. CH), 2.75 (с, 3H, SMe₂), 2.74 (с, 6H, CMe), 2.64 (с, 3H, SMe₂), 2.38 (с, 3H, CMe), 1.50 (д, *J* = 30 Гц, 6H, BMe). Спектр ЯМР ¹¹B (ацетон-*d*₆): 10.00 (с, 2B, C₃B₂), -0.63 (д, *J* = 101 Гц, 1B), -4.30 (д, *J* = 90 Гц, 1B), -6.78 (с, 1B, BSMe₂), -7.78 (д, *J* = 109 Гц, 1B), -11.30 (д, *J* = 99 Гц, 1B), -14.59 (д, *J* = 93 Гц, 1B), -22.12 (д, *J* = 119 Гц, 1B), -23.21 (д, *J* = 118 Гц, 1B), -25.92 (д, *J* = 114 Гц, 1B). HRMS (ES), [C₁₇H₃₆¹⁰B₂¹¹B₉SCo¹⁹³Ir]⁺, m/z, вычислено: 643.2595; найдено: 643.2617.

Синтез [CpCo(µ-η:η-1,3-С₃B₂Me₅)Ru(η⁶-С₅Me₄CH₂)]PF₆ (76PF₆)

К синему раствору 142 мг (0.28 ммоля) комплекса СрСо(µ-η:η-1,3-C₃B₂Me₅)RuCp* (**29b**) в 5 мл CH₂Cl₂ добавили 110 мг (0.284 ммоля) [Ph₃C]PF₆. Практически мгновенно цвет поменялся на темно-красный.

Реакционную смесь перемешивали в течение 2 ч при комнатной температуре, отфильтровали и к полученному раствору добавили 40 мл диэтилового эфира. Образовавшийся осадок отфильтровали, промыли эфиром, растворили в CH₂Cl₂ и высадили Et₂O. Образовавшийся осадок отцентрифугировали и высушили в вакууме. Получили комплекс **76**PF₆ в виде красного мелкокристаллического вещества, выход 164 мг (90%). Найдено (%): C, 43.25; H, 5.37; B, 3.45. С₂₃Н₃₄В₂СоF₆PRu. Вычислено (%): C, 43.36; H, 5.38, B, 3.39. Спектр ЯМР ¹Н (CDCl₃): 4.85 (с, 5H, C₅H₅), 4.55 (c, 2H, CH₂), 2.16 (c, 6H, CMe), 1.72 (c, 6H, 2CMe), 1.23 (c, 6H, 2CMe), 1.66 (с, 3H, CMe), 1.13 (с, 6H, BMe). Спектр ЯМР ¹¹В{¹H} (CDCl₃): 15.99 (с). Спектр ЯМР ¹³С (ацетон- d_6): 105.7 (с, Ru(C₅)), 98.9 (с, Ru(C₅)), 93.5 (с, Ru(C₅)), 84.7 (д. квинт., *J*_{CH} = 181.9 Гц, *J*²_{CH} = 6.7 Гц, Co(C₅)), 76.2 (т, *J*_{CH} = 165.9 Гц, CH₂), 18.4 (кварт., *J*_{CH} = 127.9 Гц, CCH₃), 17.6 (кварт., J_{CH} = 126.4 Гц, ССН₃), 9.7 (кварт., J_{CH} = 129.1 Гц, ССН₃), 7.9 (кварт., J_{CH} = 129.1 Гц, ССН₃) (некоторые сигналы не удалось детектировать из-за взаимодействия с квадрупольными ядрами бора). MS (EI): М⁺ 493.2.

Синтез [CpCo(µ-η:η-1,3-С₃B₂Me₅)Ru(C₅Me₄CH₂OH)] (77)

К суспензии 100 мг (0.157 ммоля) комплекса [CpCo(μ - η : η -1,3-C₃B₂Me₅)Ru(η^{6} -C₅Me₄CH₂)]PF₆ (**76**PF₆) в 5 мл ТГФ добавили 10 мл 15 % водного раствора КОН (избыток) и перемешивали в течение 3 ч при комнатной температуре. Органический слой отделили, растворитель удалили в вакууме, остаток экстрагировали Et₂O и фильтровали через слой оксида алюминия (2 × 2 см). Фильтрат упарили досуха и высушили в вакууме. Получили комплекс **77** в виде синего твердого вещества, выход 71 мг (89%). Найдено (%): C, 54.44; H, 7.05; B, 4.11. C₂₃H₃₅B₂CoORu. Вычислено (%): C, 54.26; H, 6.93, B, 4.25. Спектр ЯМР ¹H (ацетон-*d*₆): 4.37 (с, 5H; C₅H₅), 3.99 (д, 2H; *J* = 5.6 Гц, CH₂), 2.19 (с, 6H; CMe, C₃B₂), 1.70 (с,

3H, CMe, C₃B₂), 1.52 (c, 6H, CMe, C₅), 1.49 (c, 6H, CMe, C₅), 1.06 (c, 6H, BMe, C₃B₂). Спектр ЯМР ¹¹B{¹H} (ацетон- d_6): 13.68 (c). Спектр ЯМР ¹³C{¹H} (ацетон- d_6): 82.6 (c, Co(<u>C</u>₅)), 79.7 (c, Ru(<u>C</u>₅)), 78.4 (c, Ru(<u>C</u>₅)), 77.8 (c, Ru(<u>C</u>₅)), 57.0 (c, <u>CH</u>₂), 19.7 (c, C<u>C</u>H₃), 18.3 (c, C<u>C</u>H₃), 9.8 (c, C<u>C</u>H₃), 9.7 (c, C<u>C</u>H₃) (некоторые сигналы не удалось детектировать из-за взаимодействия с квадрупольными ядрами бора). Спектр ИК (CaF₂, cm⁻¹): v_{OH} = 3255 (ш).

Синтез [CpCo(µ-η:η-1,3-С₃B₂Me₅)Ru(C₅Me₄CH₂PPh₃)]PF₆ (78PF₆)

Смесь 100 мг (0.157 ммоля) комплекса [CpCo(µ-η:η-1,3-С₃B₂Me₅)Ru(η⁶-С₅Ме₄CH₂)]РF₆ (**76**PF₆) и 45 мг (0.171 ммоля) PPh₃ в 5 мл CH₂Cl₂ перемешивали в течение 2 ч при комнатной температуре, затем добавили 35 мл Et₂O. Образовавшийся осадок отцентрифугировали, промыли Et₂O (3 × 10 мл) и высушили в вакууме. Получили комплекс **78**PF₆ в виде сероголубого твердого вещества, выход 128 мг (91%). Найдено (%): С, 54.70; Н, 5.30; В, 2.20. С₄₁Н₄₉В₂СоF₆Р₂Ru. Вычислено (%): С, 54.75; Н, 5.49, В, 2.40. Спектр ЯМР ¹Н (ацетон- d_6): 7.93 (т, 3Н, J = 7 Гц, H_p), 7.76 – 7.63 (м, 12Н, H₀ и H_p), 4.43 (с, 5H; C₅H₅), 4.12 (д, 2H; $J_{PH} = 10.8$ Гц, CH₂), 2.17 (с, 6H; CMe, C₃B₂), 1.68 (c, 3H, CMe, C₃B₂), 1.45 (c, 6H, CMe, C₅), 1.04 (c, 6H, BMe, $C_{3}B_{2}$), 0.89 (с, 6H, CMe, C₅). Спектр ЯМР ¹¹B{¹H} (ацетон- d_{6}): 13.63 (с). Спектр ЯМР ³¹Р{¹H} (ацетон- d_6): 14.54 (с, PPh₃), – 144.24 (септет, $J_{PF} = 707$ Гц, PF₆). Спектр ЯМР ¹³С{¹H} (ацетон- d_6): 135.4 (д, $J_{CP} = 2.8$ Гц, C_p , PPh₃), 134.9 (д, *J*_{CP} = 9.7 Гц, С_о или С_m, PPh₃), 130.2 (д, *J*_{CP} = 11.9 Гц, С_о или С_m, PPh₃), 117.9 (μ , $J_{CP} = 80.4 \Gamma \mu$, C_{ipso} , PPh₃), 82.8 (c, Co(\underline{C}_5)), 80.3 (c, Ru(\underline{C}_5)), 77.9 (c, Ru(C₅)), 69.7 (c, Ru(C₅)), 25.3 (μ , J_{CP} = 43.2 $\Gamma\mu$, CH₂), 19.3 (c, CCH₃), 18.0 (с, ССН₃), 10.3 (с, ССН₃), 9.6 (с, ССН₃) (некоторые сигналы не удалось детектировать из-за взаимодействия с квадрупольными ядрами бора).

Синтез [CpCo(µ-η:η-1,3-C₃B₂Me₅)Ru(C₅Me₄CH₂NEt₃)]PF₆ (79PF₆). ЯМР ¹Н эксперимент

В ЯМР-ампуле к красному раствору 25 мг (0.039 ммоля) комплекса [CpCo(μ - η : η -1,3-C₃B₂Me₅)Ru(η^{6} -C₅Me₄CH₂)]PF₆ (**76**PF₆) в 0.5 мл ацетона-*d*₆ (содержит около 5% воды) добавили 5 мг (0.049 ммоля) NEt₃. Практически мгновенно цвет поменялся на темно-фиолетовый. Согласно спектру ЯМР ¹Н реакционная смесь вместо сигналов исходного комплекса **76**PF₆ содержит новый набор сигналов, относящихся к продукту **79**PF₆. Спектр ЯМР ¹Н (ацетон-*d*⁶): 4.46 (c, 5H; Cp), 4.06 (c, 2H, CH₂), 3.37 (кварт., 6H, N(C<u>H</u>₂CH₃)₃, *J* = 9.6 Гц), 2.17 (c, 6H; CMe, C₃B₂), 1.69 (перекрывающиеся синглеты, 9H, 3H от C<u>Me</u>, C₃B₂ и 6H от C<u>Me</u>, C₅), 1.55 (c, 6H, CMe, C₅), 1.31 (уш. т, 9H, *J* = ca. 8 Гц, N(CH₂C<u>H</u>₃)₃), 1.04 (уш. c, 6H, BMe, C₃B₂).

Синтез СрСо(µ-η:η-1,3-С₃B₂Me₅)Ru(C₅Me₄CH₂OCH₂C₅Me₄)Ru(µ-η:η-1,3-C₃B₂Me₅)CoCp (80)

ЯМР-ампулу из предыдущего эксперимента оставили на 3 дня при комнатной температуре. В течение этого времени цвет раствора поменялся с темно-фиолетового на синий и образовались синие кристаллы. Кристаллы отделили, промыли 1 мл гексана и высушили в вакууме. Получили комплекс **80** в виде синих кристаллов, выход 16 мг (80%). Найдено (%): С, 55.37; H, 6.92; B, 4.28. C₄₆H₆₈B₄Co₂ORu₂. Вычислено (%): С, 55.23; H, 6.85, B, 4.32. Спектр ЯМР ¹H (CD₂Cl₂): 4.25 (с, 10H, 2Cp), 3.78 (с, 4H, CH₂, (Ru)C₅), 2.12 (с, 12H, 4CMe, C₃B₂), 1.77 (с, 6H, 2CMe, C₃B₂), 1.46 (с, 12H, 4CMe, (Ru)C₅), 1.42 (с, 12H, 4CMe, (Ru)C₅), 1.05 (с, 12H, 4BMe, C₃B₂). Спектр ЯМР ¹¹B{¹H} (CD₂Cl₂): 13.95 (с).

Синтез [CpCo(µ-η:η-1,3-C₃B₂Me₅)Ru(C₅Me₄CH₂(4-C₆H₄NEt₂H)]PF₆ (81PF₆)

К раствору 64 мг (0.1 ммоля) комплекса [CpCo(μ - η : η -1,3-C₃B₂Me₅)Ru(η ⁶-C₅Me₄CH₂)]PF₆ (**76**PF₆) в 1 мл ацетона добавили 15 мг (0.107 ммоля) PhNEt₂ и перемешивали реакционную смесь в течение 48 ч при комнатной температуре, после чего добавили 15 мл гексана. Образовавшийся сероголубой осадок отделили с помощью центрифугирования, промыли Et₂O (3 × 5 мл) и высушили в вакууме. Получили комплекс **81**PF₆ в виде сероголубого твердого вещества, выход 65 мг (83%). Найдено (%): C, 50.67; H, 6.41; B, 2.55. C₃₃H₄₉B₂CoF₆NPRu. Вычислено (%): C, 50.41; H, 6.28, B, 2.75. Спектр ЯМР ¹H (CD₂Cl₂): 7.43 (д, 2H, AA'BB', *J_{AB}* = 7.6 Гц, *p*-C₆H₄), 7.31 (д, 2H, AA'BB', *J_{AB}* = 7.6 Гц, *p*-C₆H₄), 4.67 (с, 5H; Cp), 3.62 (кварт., 4H, *J* = 7.2 Гц, N(C<u>H</u>₂CH₃)₂), 3.24 (с, 2H, CH₂), 1.99 (с, 6H; CMe, C₃B₂), 1.84 (с, 6H, CMe, C₅), 1.77 (с, 6H, CMe, C₅), 1.30 (перекрывающиеся синглеты, 9H, 3H от C<u>Me</u>, C₃B₂ и 6H от BMe, C₃B₂), 1.21 (т, 6H, *J* = 7.2 Гц, N(CH₂C<u>H</u>₃)₂). Спектр ЯМР ¹¹B{¹H} (CD₂Cl₂): 13.05 (с).

ЯМР ¹**Н** эксперимент: В аналогичном эксперименте в ЯМР-ампулу поместили 6.4 мг (0.01 ммоля) комплекса [CpCo(μ - η : η -1,3-C₃B₂Me₅)Ru(η ⁶-C₅Me₄CH₂)]PF₆ (**76**PF₆), 0.5 мл ацетона-*d*₆ и 1.8 мг (0.012 ммоля, 20%-избыток) PhNEt₂. За ходом реакции следили, снимая периодически спектры ЯМР. Оказалось, что спустя 24 ч сигналы, относящиеся к исходному комплексу **76**PF₆, полностью исчезли.

В сходном эксперименте в ЯМР-ампулу поместили 5.1 мг (0.01 ммоля) комплекса [Cp*Ru(C₅Me₄CH₂)]PF₆, 0.5 мл ацетона- d_6 и 1.8 мг (0.012 ммоля, 20%-избыток) PhNEt₂. В этом случае исчезновение сигналов исходного комплекса [Cp*Ru(C₅Me₄CH₂)]PF₆ наблюдалось через 8 ч.

Синтез 2-(CpCo(µ-η:η-1,3-С3В2Ме5)Ru(C5Me4CH2)(4-MeC6H3NH2) (82)

К раствору 64 мг (0.1 ммоля) [CpCo(μ-η:η-1,3-C₃B₂Me₅)Ru(η⁶-C₅Me₄CH₂)]PF₆ (**76**PF₆) в 1 мл ацетона добавили 32 мг (0.3 ммоля) 4МеС₆H₄NH₂ и перемешивали реакционную смесь в течение 48 ч при комнатной температуре, после чего растворитель удалили в вакууме. Остаток хроматографировали на колонке с оксидом алюминия (0.5 × 20 см), используя петролейный эфир в качестве элюента. Собрали синюю фракцию, растворитель удалили в вакууме. Получили комплекс **82** в виде синего твердого вещества, выход 43 мг (71%). Найдено (%): С, 60.37; Н, 7.35; В, 3.51. С₃₀H₄₂B₂CoNRu. Вычислено (%): С, 60.23; Н, 7.08, В, 3.61. Спектр ЯМР ¹Н NMR (CDCl₃): 6.74 (д, 1H, J = 7.6 Гц, С₆H₃), 6.52 (д, 1H, J = 7.6 Гц, С₆H₃), 6.36 (с, 1H, С₆H₃), 4.23 (с, 5H; Cp), 3.49 (уш. с, 2H, NH₂), 3.10 (с, 2H, CH₂), 2.16 (с, 6H; CMe, C₃B₂), 2.08 (с, 3H, CH₃), 1.69 (с, 3H, CMe, C₃B₂), 1.51 (с, 6H, CMe, C₅), 1.39 (с, 6H, CMe, C₅), 1.05 (уш. с, 6H, BMe, C₃B₂). Спектр ЯМР ¹¹B{¹H} (CDCl₃): 14.21 (с).

Синтез [CpCo(µ-η:η-1,3-C₃B₂Me₅)Ru(C₅Me₄CH₂CH₂C₅Me₄)Ru(µ-η:η-1,3-C₃B₂Me₅)CoCp] (83)

Смесь 100 мг (0.157 ммоля) комплекса [CpCo(μ - η : η -1,3-C₃B₂Me₅)Ru(η ⁶-C₅Me₄CH₂)]PF₆ (**76**PF₆) и 40 мг (0.628 ммоля, 4-кратный избыток) Zn в 5 мл ТГФ перемешивали при комнатной температуре в течение 24 ч. С помощью центрифугирования отделили осадок и полученный синий раствор упарили досуха. Остаток хроматографировали на колонке с силикагелем (1.5 × 20 см), используя петролейный эфир в качестве элюента. Собрали небольшую первую синюю фракцию, дальнейшее элюирование петролейным эфиром привело ко второй, основной фракции (также синей). Растворитель удалили в вакууме, из первой фракции получили минорное количество трехпалубного комплекса **29b** (3 мг), из второй фракции получили комплекс **83** в виде синего твердого вещества, выход 72 мг (91%). Найдено (%): C, 56.13; H, 7.20; B, 4.64. C₄₆H₆₈B₄Co₂Ru₂. 10H, 2C₅H₅), 2.06 (с, 12H, 4CMe, C₃B₂), 1.75 (с, 4H, 2CH₂, (Ru)C₅), 1.58 (с, 6H, 2CMe, C₃B₂), 1.43 (с, 12H, 4CMe, (Ru)C₅), 1.33 (с, 12H, 4CMe, (Ru)C₅), 0.95 (с, 12H, 4BMe, C₃B₂). Спектр ЯМР ¹¹B{¹H} (CDCl₃): 14.27 (с).

выводы

- Разработан общий метод синтеза трехпалубных комплексов с мостиковыми 5-членными лигандами, содержащими 1 или 2 атома бора (борол и 1,3-диборолил), использующий электрофильный стэкинг борсодержащих моноядерных сэндвичевых комплексов с полусэндвичевыми фрагментами [LM]ⁿ⁺.
- Синтезированы и структурно охарактеризованы четырехпалубные комплексы CpCo(μ-1,3-C₃B₂Me₅)M(μ-1,3-C₃B₂Me₅)CoCp (M = Fe, Co, Ni). Эти соединения были получены реакцией аниона [CpCo(1,3-C₃B₂Me₅)]⁻ с галогенидами металлов.
- 3. Развит новый синтетический подход к трехпалубным комплексам, основанный на использовании дигалогенидов [CpCo(µ-1,3-C₃B₂Me₅)MX₂]₂ (M = Rh, Ir; X = Cl, Br), и показана его широкая применимость. Этим путем синтезированы комплексы, содержащие карбонильные, фосфиновые, циклопентадиенильные, ареновые и карборановые лиганды.
- 4. Получен фульвеновый $[CpCo(\mu - 1, 3$ комплекс $C_{3}B_{2}Me_{5})Ru(C_{5}Me_{4}CH_{2})]^{+}$, который представляет собой первый пример стабилизации α-карбениевого центра в трехпалубном комплексе. Последующая функционализация позволила получить замещенные трехпалубные соединения. С помощью метода РСА и DFT-расчетов показано. случае трехпалубного катиона [CpCo(µ-1,3что В $C_3B_2Me_5)Ru(C_5Me_4CH_2)]^+$ наблюдается бо́льшая стабилизация αкарбениевого центра по сравнению с металлоценовым аналогом $[Cp*RuC_5Me_4CH_2]^+$.
- 5. Установлено, что основной структурной особенностью трехпалубных комплексов является удлинение расстояний от атомов металла до

мостикового лиганда и сокращение расстояний от атомов металла до терминальных лигандов по сравнению с соответствующими расстояниями в моноядерных сэндвичевых соединениях.

- 6. По электрохимического данным исследования трех-И четырехпалубные комплексы претерпевают одноэлектронные процессы окисления и восстановления, которые в большинстве случаев обратимы. DFT-расчеты позволяют установить структуры редокс-форм И удовлетворительно предсказывают электродные потенциалы обратимых процессов. Показано, что нейтральный комплекс СрСо^{II}(µ-1,3-C₃B₂Me₅)Co^{III}Cp, представляет собой полностью делокализованную смешанно-валентную частицу.
- 7. Исследована природа химической связи металл-лиганд в синтезированных комплексах. С помощью экспериментальных (синтез, электрохимия, метод РСА) и теоретических (разложение энергии и анализ заселенностей по Малликену) методов установлено, что анионы [CpCo(1,3-C₃B₂R₅)]⁻ и [C₅R₅]⁻ (R = H, Me) проявляют близкую способность к координации с переходными металлами.

СПИСОК ЛИТЕРАТУРЫ

- ¹ H. Werner, A. Salzer, Synth. Inorg. Met.-Org. Chem. 1972, 2, 239.
- ² A. Salzer, H. Werner, Angew. Chem. Int. Ed. Engl. 1972, 11, 930.
- ³ T. L. Court, H. Werner, J. Organomet. Chem. 1974, 65, 245.
- ⁴ J. W. Lauher, M. Elian, R. H. Summerville, R. Hoffmann, *J. Amer. Chem. Soc.* **1976**, *98*, 3219.
- ⁵ H. Werner, Angew. Chem. Int. Ed. Engl. 1977, 16, 1.
- ⁶ H. Werner, T. Dernberger, J. Organomet. Chem. 1980, 198, 97.
- ⁷ H. Werner, J. Organomet. Chem. **1980**, 200, 335.
- ⁸ A. R. Kudinov, M. I. Rybinskaya, Yu. T. Struchkov, A. I. Yanovskii, P. V. Petrovskii, *J. Organomet. Chem.* **1987**, *336*, 187.
- ⁹ G. E. Herberich, U. Englert, F. Marken, P. Hofmann, *Organometallics* **1993**, *12*, 4039.
- ¹⁰ E. J. Watson, K. L. Virkaitis, H. Li, A. J. Nowak, J. S. D'Acchioli, K. Yu, G. B. Carpenter, Y. K. Chung, D. A. Sweigart, *J. Chem. Soc., Chem. Commun.* **2001**,
- 457.
- ¹¹ А. Р. Кудинов, А. А. Фильчиков, П. В. Петровский, М. И. Рыбинская, *Изв. АН, Сер. хим.* **1999**, 1364.
- ¹² A. R. Kudinov, E. V. Mutseneck, D. A. Loginov, *Coord. Chem. Rev.* 2004, 248, 571.
- ¹³ А. Р. Кудинов, П. В. Петровский, В. И. Мещеряков, М. И. Рыбинская, *Изв. АН, Сер. хим.* **1999**, 1368.
- ¹⁴ А. Р. Кудинов, М. И. Рыбинская, Д. С. Перекалин, В. И. Мещеряков, Ю. А. Журавлев, П. В. Петровский, А. А. Корлюков, Д. Г. Голованов, К. А. Лысенко, *Изв. АН, Сер. хим.* **2004**, 1879.
- ¹⁵ G. E. Herberch, B. Buller, B. Hessner, W. Oschmann, *J. Organomet. Chem.* **1980**, *195*, 253.

¹⁶ J. J. Eisch, J. E. Galle, S. Kozima, J. Amer. Chem. Soc. 1986, 108, 379.

¹⁷ G. E. Herberich, B: G. Wilkinson, F. G. A. Stone, E. W. Abel (Eds.), *Comprehensive Organometallic Chemistry*, vol. 1, Pergamon Press, New York, **1982**, p. 381.

¹⁸ G. E. Herberich, B: E. W. Abel, F. G. A. Stone, G. Wilkinson (Eds.), *Comprehensive Organometallic Chemistry II*, vol. 1, Pergamon Press, New York, **1995**, p. 197.

¹⁹ G. E. Herberich, J. Hengesbach, U. Kölle, G. Huttner, A. Frank, Angew. Chem., Int. Ed. Engl. **1976**, 15, 433.

²⁰ G. E. Herberich, J. Hengesbach, G. Huttner, A. Frank, U. Schubert, J. Organomet. Chem. **1983**, 246, 141.

- ²¹ G. E. Herberich, H. Ohst, Chem. Ber. 1985, 118, 4303.
- ²² G. E. Herberich, B. Hessner, W. Boveleth, H. Lüthe, R. Saive, L. Zelenka, *Angew. Chem., Int. Ed. Engl.* **1983**, 22, 996.
- ²³ G. E. Herberich, B. Hessner, W. Boveleth, H. Lüthe, R. Saive, L. Zelenka, *Angew. Chem. Suppl.* **1983**, 1503.
- ²⁴ G.E. Herberich, W. Boveleth, B. Hessner, D.P.J. Köffer, M. Negele, R. Saive, J. Organomet. Chem. **1986**, 308, 153.
- ²⁵ G. E. Herberich, I. Hausmann, N. Klaff, *Angew. Chem., Int. Ed. Engl.* **1989**, *28*, 319.
- ²⁶ G. E. Herberich, I. Hausmann, B. Hessner, M. Negele, J. Organomet. Chem. **1989**, 362, 259.
- ²⁷ G. E. Herberich, B. Hessner, R. Saive, J. Organomet. Chem. 1987, 319, 9.
- ²⁸ G. E. Herberich, U. Büschges, B. Hessner, H. Lüthe, *J. Organomet. Chem.* **1986**, *312*, 13.
- ²⁹ G. E. Herberich, U. Büschges, *Chem. Ber.* 1989, 122, 615.
- ³⁰ G. E. Herberich, H. J. Eckenrath, U. Englert, *Organometallics* 1997, 16, 4292.
- ³¹ G. E. Herberich, H. J. Eckenrath, U. Englert, *Organometallics* **1997**, *16*, 4800.

- ³² G. E. Herberich, H. J. Eckenrath, U. Englert, Organometallics 1998, 17, 519.
- ³³ G. E. Herberich, B. Hessner, J. A. K. Howard, D. P. J. Köffer, R. Saive, Angew. Chem., Int. Ed. Engl. 1986, 25, 165.
- ³⁴ G. E. Herberich, D. P. J. Köffer, K. M. Peters, Chem. Ber. 1991, 124, 1947.
- ³⁵ G. E. Herberich, B. J. Dunne, B. Hessner, *Angew. Chem., Int. Ed. Engl.* **1989**, 28, 737.
- ³⁶ G. E. Herberich, U. Büschges, B. A. Dunne, B. Hessner, N. Klaff, D. P. J. Köffer, K. Peters, *J. Organomet. Chem.* **1989**, *372*, 53.
- ³⁷ G. E. Herberich, W. Boveleth, B. Hessner, M. Hostalek, D. P. J. Köffer, H. Ohst,
 D. Söhnen, *Chem. Ber.* **1986**, *119*, 420.
- ³⁸ G. E. Herberich, W. Boveleth, B. Hessner, M. Hostalek, D. P. J. Köffer, M. Negele, *J. Organomet. Chem.* **1987**, *319*, 311.
- ³⁹ G. Fairhurst, C. White, J. Chem. Soc., Dalton Trans. 1979, 1531.
- ⁴⁰ E. Dubler, M. Textor, H. R. Oswald, G. B. Jameson, *Acta Crystallogr., Sect. B* **1983**, *39*, 607.
- ⁴¹ P.O. Lumme, U. Turpeinen, A.R. Kudinov, M.I. Rybinskaya, *Acta Crystallogr.,* Sect. C **1990**, 46, 1410.
- ⁴² J. J. Schneider, R. Goddard, S. Werner, C. Krüger, *Angew. Chem., Int. Ed. Engl.* **1991**, *30*, 1124.
- ⁴³ W. M. Lamanna, W. B. Gleason, D. Britton, Organometallics 1987, 6, 1583.
- ⁴⁴ S. K. Ghag, M. L. Tarlton, E. A. Henle, E. M. Ochoa, A. W. Watson, L. N. Zakharov, E. J. Watson, *Organometallics* **2013**, *32*, 1851.
- ⁴⁵ P. Zanello, *Inorganic Electrochemistry*. *Theory, Practice and Application*, RSC, Cambridge, UK, **2003**.
- ⁴⁶ D. Catheline, D. Astruc, *Organometallics* **1984**, *3*, 1094.
- ⁴⁷ M. V. Butovskii, U. Englert, A. A. Fil'chikov, G. E. Herberich, U. Koelle, A. R. Kudinov, *Eur. J. Inorg. Chem.* **2002**, 2656.

⁴⁸ E. V. Mutseneck, D. A. Loginov, D. S. Perekalin, Z. A. Starikova, D. G.

Golovanov, P. V. Petrovskii, P. Zanello, M. Corsini, F. Laschi, A. R. Kudinov, Siebert, J. Edwin, H. Wadepohl *Organometallics* **2004**, *23*, 5944.

- ⁴⁹ H. Lüthe, *Ph.D. Thesis*, RWTH Aachen, Germany, **1984**.
- ⁵⁰ Б. П. Бирюков, Ю. Т. Стручков, Успехи Химии **1970**, *39*, 1672.
- ⁵¹ G. Frenking, N. Fröhlich, *Chem. Rev.* 2000, 100, 717.
- ⁵² G. Frenking, J. Organomet. Chem. 2001, 635, 9.
- ⁵³ G. Frenking, K. Wichmann, N. Fröhlich, C. Loschen, M. Lein, J. Frunzke, V. M.
- Rayon, Coord. Chem. Rev. 2003, 238–239, 55.
- ⁵⁴ G. Frenking, A. Krapp, J. Comput. Chem. 2007, 28, 15.
- ⁵⁵ T. Ziegler, J. Autschbach, *Chem. Rev.* 2005, 105, 2695.
- ⁵⁶ K. Morokuma, *Chem. Phys.* **1971**, 55, 1236.
- ⁵⁷ T. Ziegler, A. Rauk, *Theor. Chim. Acta* **1977**, *46*, 1.
- ⁵⁸ D. V. Muratov, A. S. Romanov, P. V. Petrovskii, M. Yu. Antipin, W. Siebert, A.
- R. Kudinov, Eur. J. Inorg. Chem. 2012, 4174.
- ⁵⁹ P. Binger, *Tetrahedron Letters* 1966, 2675.
- ⁶⁰ P. Binger, Angew. Chem., Int. Ed. Engl. 1968, 7, 286.
- ⁶¹ H. G. Knörzer, W. Siebert, Z. Naturforsch. B 1990, 45, 15.
- ⁶² J. Edwin, M. Bochmann, M. C. Böhm, D. E. Brennan, W. E. Geiger, C. Krüger,
- J. Pebler, H. Pritzkow, W. Siebert, W. Swiridoff, H. Wadepohl, J. Weiss, U. Zenneck, J. Amer. Chem. Soc. 1983, 105, 2582.
- ⁶³ W. Siebert, J. Edwin, H. Wadepohl, H. Pritzkow, *Angew. Chem. Int. Ed. Engl.* **1982**, 21, 149.
- ⁶⁴ W. Siebert, M. Bochmann, Angew. Chem. Int. Ed. Engl. 1977, 16, 857.
- ⁶⁵ W. Siebert, J. Edwin, M. Bochmann, Angew. Chem. Int. Ed. Engl. 1978, 17, 868.
- ⁶⁶ M. Enders, B. Gangnus, R. Hettrich, Z. Magos-Martin, M. Stephan, H. Pritzkow,
- W. Siebert, U. Zenneck, Chem. Ber.-Requei, 1993, 126, 2197.

- ⁶⁷ J. Edwin, M.C. Bohm, N. Chester, D.M. Hoffman, R. Hoffmann, H. Pritzkow,
 W. Siebert, K. Stumpf, H. Wadepohl, *Organometallics* 1983, 2, 1666.
- ⁶⁸ T. Kuhlmann, W. Siebert, Z. Naturforsch. B 1985, 40, 167.
- ⁶⁹ H. Wadepohl, H. Pritzkow, W. Siebert, *Chem. Ber.-Requeil* 1985, 118, 729.
- ⁷⁰ J. Forward, D.M.P. Mingos, W. Siebert, J. Hauss, H.R. Powell, J. Chem. Soc. Dalton Trans. **1993**, 1783.
- ⁷¹ W. Siebert, Angew. Chem., Int. Ed. Engl. **1985**, 24, 943.
- ⁷² T. Kuhlmann, W. Siebert, Z. Naturforsch. B 1984, 39, 1046.
- ⁷³ U. Fenner, H. Pritzkow, W. Siebert, Z. Naturforsch. B 1994, 49, 315.
- ⁷⁴ K. Stumpf, H. Pritzkow, W. Siebert, Angew. Chem. Int. Ed. Engl. 1985, 24, 71.
- ⁷⁵ J. F. Berar, G. Calvarin, C. Pommier, D. Weigel, J. Appl. Crystallogr. **1975**, 8, 386.
- ⁷⁶ R. N. Grimes, *Carboranes*, 2nd ed., Elsevier, Amsterdam, **2011**.
- ⁷⁷ A. Feßenbecker, A. Hergel, R. Hettrich, V. Schäfer, W. Siebert, *Chem.Ber.* **1993**, *126*, 2205.
- ⁷⁸ M. Hofmann, M. A. Fox, R. Greatrex, R. E. Williams, P. v. R. Schleyer, J. Organomet. Chem. **1998**, 550, 331.
- ⁷⁹ E. J. Ditzel, X. L. R. Fontaine, N. N. Greenwood, J. D. Kennedy, Z. Sisan, B. Štíbr, M. Thornton-Pett, *J. Chem. Soc., Chem. Commun.* **1990**, 1741.
- ⁸⁰ K. Stumpf, W. Siebert, R. Koster, G. Seidel, Z. Naturforsch. B 1987, 42, 186.
- ⁸¹ J-K. Uhm, Journal of the Korean Chemical Society 2005, 49, 329.
- ⁸² V. Gandon, N. Agenet, K. P. C. Vollhardt, M. Malacria, C. Aubert, *J. Amer. Chem. Soc.* **2009**, *131*, 3007.
- 83 P. G. Gassman, C. H. Winter, J. Am. Chem. Soc. 1988, 110, 6130.
- ⁸⁴ U. Koelle, A. Salzer, J. Organomet. Chem. 1983, 243, C27.
- ⁸⁵ U. Koelle, J. Grub, J. Organomet. Chem. 1985, 289, 133.
- ⁸⁶ C. N. R. Rao, *Chemical Applications of Infrared Spectroscopy*, Academic Press, New York, **1963**.

- ⁸⁷ B. Galabov, S. Ilieva, H. F. Schaefer III, J. Org. Chem. 2006, 71, 6382.
- ⁸⁸ R. Cramer, J. Amer. Chem. Soc. 1964, 86, 217.
- ⁸⁹ R. Cramer, J. J. Mrowka, *Inorg. Chim. Acta* 1971, 5, 528.
- ⁹⁰ C.-Y. Chen, R. J. W. Le Fevre, K. M. S. Sundar, J. Chem. Soc. 1965, 553.
- ⁹¹ H. Adams, N. A. Bailey, B. E. Mann, B. F. Taylor, C. White, P. Yavari, J. *Chem. Soc., Dalton Trans.* **1987**, 1947.
- ⁹² X. You-Feng, S. Yan, P. Zhen, J. Organomet. Chem. 2004, 689, 823.
- ⁹³ M. Arthurs, C. Piper, D. A. Morton-Blake, M. G. B. Drew, *J. Organomet. Chem.* **1992**, *429*, 257.
- ⁹⁴ V. W. Day, B. R. Stults, K. J. Reimer, A. J. Shaver, *J. Am. Chem. Soc.* **1974**, *96*, 1227.
- 95 P. E. Gaede, P. H. Moran, A.-N. Richarz, J. Organomet. Chem. 1998, 559, 107.
- ⁹⁶ O. Daugulis, M. Brookhart, Organometallics 2004, 23, 527.
- ⁹⁷ D. R. Lide, *CRC Handbook of Chemistry and Physics*, 83rd ed., CRC Press, **2003**.

⁹⁸ R. Cramer, *Inorg. Chem.* **1962**, *1*, 722.

⁹⁹ R. P. Hughes, B: G. Wilkinson, F. G. A. Stone, E. W. Abel (Eds.), *Comprehensive Organometallic Chemistry*, vol. 5, Pergamon Press, Oxford, **1982**, pp. 277–540.

¹⁰⁰ C. E. Barnes, in: E. W. Abel, F. G. A. Stone, G. Wilkinson (Eds.), *Comprehensive Organometallic Chemistry II*, vol. 8, Pergamon Press, New York, **1995**, pp. 419–520.

¹⁰¹ R. B. King, *Inorg. Chem.* **1963**, *2*, 528.

¹⁰² R. Cramer, J. Amer. Chem. Soc. 1972, 94, 5681.

¹⁰³ N. J. Coville, K. E. du Plooy, W. Pickl, *Coord. Chem. Rev.* **1992**, *116*, 1.

¹⁰⁴ K. Moseley, J. W. Kang, P. M. Maitlis, J. Chem. Soc. (A) **1970**, 2875.

- ¹⁰⁵ T. S. Piper, F. A. Cotton, G. Wilkinson, J. Inorg. Nucl. Chem. 1955, 1, 165.
- ¹⁰⁶ E. O. Fischer, W. Fellmann, J. Organomet. Chem. 1963, 1, 191.

¹⁰⁷ S. Roth, V. Ramamoorthy, P. R. Sharp, *Inorg. Chem.* **1990**, *29*, 3345.

¹⁰⁸ B. Martin-Matute, M. Edin, K. Bogar, F.B. Kaynak, J.-E.Bäckvall, *J. Amer. Chem. Soc.* **2005**, *127*, 8817.

- ¹⁰⁹ R. Boese, J. K. Cammack, A. J. Matzger, K. Pflug, W. B. Tolman, K. P. C. Vollhardt, T. W. Weidman, *J. Am. Chem. Soc.* **1997**, *119*, 6757.
- ¹¹⁰ J. T. Mague, Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1995, 51, 831.
- ¹¹¹ A. Steiner, H. Gornitzka, D. Stalke, F. T. Edelmann, J. Organomet. Chem. **1992**, 431, C21.
- ¹¹² D. Chong, D. R. Laws, A. Nafady, P. J. Costa, A. L. Rheingold, M. J. Calhorda,
 W. E. Geiger, *J.Am. Chem. Soc.* 2008, *130*, 2692.
- ¹¹³ R. A. Zelonka, M. C. Baird, J. Organomet. Chem. 1972, 44, 383.
- ¹¹⁴ I. W. Robertson, T. A. Stephenson, D. A. Tocher, *J. Organomet. Chem.* **1982**, 228, 171.
- ¹¹⁵ D. Braga, O. Benedi, L. Maini, F. Grepioni, J. Chem.Soc., Dalton Trans. 1999, 2611.
- ¹¹⁶ D. Buchholz, L. Zsolnai, G. Huttner, D. Astruc, J. Organomet. Chem. 2000, 593, 494.
- ¹¹⁷ Y. T. Struchkov, M. Y. Antipin, K. A. Lyssenko, O. V. Gusev, T. A. Peganova, N. A. Ustynyuk, *J. Organomet. Chem.* **1997**, *536*, 281.
- ¹¹⁸ L. Quebatte, R. Scopelliti, K. Severin, Eur. J. Inorg. Chem. 2006, 231.
- ¹¹⁹ J. M. O'Connor, S. J. Friese, M. Tichenor, J. Am. Chem. Soc. 2002, 124, 3506.
- ¹²⁰ M. B. Robin, P. Day, Adv. Inorg. Chem. Radiochem. 1967, 10, 247.
- ¹²¹ M. R. Churchill, S. A. Julis, *Inorg. Chem.* **1978**, *17*, 3011.
- ¹²² M. R. Churchill, S. A. Julis, F. J. Rotella, *Inorg. Chem.* 1977, 16, 1137.
- ¹²³ M. R. Churchill, S. A. Julis, *Inorg. Chem.* **1979**, *18*, 2918.
- ¹²⁴ L. Liu, Q. Zhang, W. Leung, Acta Crystallogr. 2004, E60, m509.
- ¹²⁵ В. Г. Андрианов, З. Л. Луценко, А. З. Рубежов, Ю. Т. Стручков, *Коорд. Химия* **1986**, *12*, 558.

- ¹²⁶ M. Valderrama, M. Scotti, P. Campos, R. Sariego, K. Peters, H. G. von Schnering, H. Werner, *Nouv. J. Chim.* **1988**, *12*, 633.
- ¹²⁷ K. Umakoshi, K. Murata, S. Yamashita, K. Isobe, *Inorg. Chim. Acta* **1991**, *190*, 185.
- ¹²⁸ см. обзор: Р. М. Maitlis, *Chem. Soc. Rev.* **1981**, *10*, 1.
- ¹²⁹ C. White, S. J. Thompson, P. M. Maitlis, J. Chem. Soc. Dalton Trans. 1977, 1654.
- ¹³⁰ A. M. FitzGerald, M. Nieuwenhuyzen, G. C. Saunders, *J.Organomet.Chem.* **1999**, 584, 206.
- ¹³¹ B. Paz-Michel, M. Cervantes-Vazquez, M. A. Paz-Sandoval, *Inorg.Chim.Acta* **2008**, *361*, 3094.
- ¹³² M. V. Campian, J. L. Harris, N. Jasim, R. N. Perutz, T. B. Marder, A. C. Whitwood, *Organometallics* **2006**, *25*, 5093.
- ¹³³ M. Herberhold, T. Hofmann, W. Milius, B. Wrackmeyer, *J. Organomet. Chem.* **1994**, 472, 175.
- ¹³⁴ I. U. Khand, P. L. Pauson, W. E. Watts, J. Chem. Soc. C 1968, 2257.
- ¹³⁵ Д. А. Логинов, М. М. Виноградов, З. А. Старикова, П. В. ПетровскийА. Р. Кудинов, *Изв. Акад. Наук, Сер. Хим.* **2004**, 1871.
- ¹³⁶ W. J. Bowyer, J. W. Merkert, W. E. Geiger, *Organometallics* **1989**, *8*, 191–198.
 ¹³⁷ W. J. Bowyer, W. E. Geiger, *J. Am. Chem. Soc.* **1985**, *107*, 5657–5663.
- ¹³⁸ W. Siebert, A. R. Kudinov, P. Zanello, M. Yu. Antipin, V. V. Scherban, A. S. Romanov, D. V. Muratov, Z. A. Starikova, M. Corsini, *Organometallics* 2009, 28, 2707.
- ¹³⁹ D. V. Muratov, A. S. Romanov, M. Yu. Antipin, W. Siebert, M. Corsini, S. Fedi, P. Zanello, A. R. Kudinov, *Organometallics* **2013**, *32*, 2713.
- ¹⁴⁰ P. Zanello, R. H. Herber, A. R. Kudinov, M. Corsini, F. Fabrizi de Biani, I. Nowik, D. A. Loginov, M. M. Vinogradov, L. S. Shul'pina, I. A. Ivanov, A. V. Vologzhanina, *J. Organomet. Chem.* **2009**, *694*, 1161.

¹⁴¹ A. R. Kudinov, P. Zanello, R. H. Herber, D. A. Loginov, M. M. Vinogradov, A.

V. Vologzhanina, Z. A. Starikova, M. Corsini, G. Giorgi, I. Nowik, *Organometallics* **2010**, *29*, 2260.

¹⁴² D. V. Muratov, F. M. Dolgushin, S. Fedi, P. Zanello, A. R. Kudinov, *Inorg. Chim. Acta* **2011**, *374*, 313.

¹⁴³ Аналогичные примеры $\eta^6 \rightarrow \eta^4$ изменения связанности шестичленного кольца описаны в работе: M. Corsini, S. Losi, E. Grigiotti, F. Rossi, P. Zanello, A. R. Kudinov, D. A. Loginov, M. M. Vinogradov, Z. A. Starikova, *J. Solid State Electrochem.* **2007**, *11*, 1643–1653.

¹⁴⁴ A. I. Yanovsky, Y. T. Struchkov, A. Z. Kreindlin, M. I. Rybinskaya, J. Organomet. Chem. **1989**, 369, 125.

¹⁴⁵ S. Barlow, A. Cowley, J. C. Green, T. J. Brunker, T. Hascall, *Organometallics*, **2001**, *20*, 5351.

¹⁴⁶ D. V. Muratov, A. S. Romanov, A. R. Kudinov, *Mendeleev Commun.* 2015, 25,
1.

¹⁴⁷ А. Н. Несмеянов, Э. Г. Перевалова, в: *Проблемы органической химии*. Изд. МГУ, Москва, **1970**, с. 5.

¹⁴⁸ А. Н. Несмеянов, В. А. Сазонова, В. Н. Дрозд, Н. А. Родионова, Г. И. Зудкова, *Изв. Акад. Наук, Сер. Хим.*, **1965**, 2061.

¹⁴⁹ G. E. Herberich, U. Buschges, B. Hessner, H. Luthe, J. Organomet. Chem. **1986**, *312*, 13.

¹⁵⁰ N. Kuhn, H. Schumann, M. Winter, E. Zauder, *Chem. Ber.* **1988**, *121*, 111.

¹⁵¹ A. S. Romanov, M. M. Vinogradov, D. V. Muratov, A. R. Kudinov, *Mendeleev Commun.* **2014**, *24*, 358–359.

¹⁵² T. P. Gill, K. R. Mann, Organometallics **1982**, *1*, 485.

¹⁵³ J. L. Schrenk, A. M. McNair, F. B. McCormick, K. R. Mann, *Inorg. Chem.* **1986**, 25, 3501.

¹⁵⁴ T. D. Tilley, R. H. Grubbs, J. E. Bercaw, Organometallics 1984, 3, 274.

- ¹⁵⁵ N. Kuhn, M. Winter, Chem. Ztg. 1983, 107, 14.
- ¹⁵⁶ N. Kuhn, M. Winter, Chem. Ztg. 1983, 107, 73.
- ¹⁵⁷ G. Giordano, R. H. Crabtree, *Inorg. Synth.* **1979**, *19*, 218.
- ¹⁵⁸ R. H. Crabtree, J. M. Quirk, H. Felkin, T. Fillebeen-Khan, *Synth. React. Inorg. Met.-Org. Chem.* **1982**, *12*, 407.
- ¹⁵⁹ R. Reimann, E. Singleton, J. Chem. Soc., DaltonTrans. 1974, 808.
- ¹⁶⁰ S. Sun, L. K. Yeung, D. A. Sweigart, T.-Y. Lee, S. S. Lee, Y. K. Chung, S. R. Switzer, R. D. Pike, *Organometallics* **1995**, *14*, 2613.
- ¹⁶¹ Руководство по неорганическому синтезу, под ред. Г. Брауэра, т.6, стр.
- 2133, Москва, "Мир", **1986**.
- ¹⁶² M. E. Woodhouse, F. D. Lewis, T. J. Marks, J. Am. Chem. Soc. **1982**, 104, 5586.
- ¹⁶³ M. J. Macazaga, S. Delgado, R. M. Medina, J. R. Masaguer, J. Organomet. Chem. **1984**, 277, 423.
- ¹⁶⁴ J. W. Kang, K. Moseley, P. M. Maitlis, J. Am. Chem. Soc. 1969, 91, 5970.
- ¹⁶⁵ C. White, A. Yates, P. M. Maitlis, *Inorg. Synth.* **1992**, 29, 228.
- ¹⁶⁶ A. R. Kudinov, D. A. Loginov, Z. A. Starikova, P. V. Petrovskii, *J. Organomet. Chem.* 2002, **649**, 136.
- ¹⁶⁷ M. A. Bennett, A. K. Smith, J. Chem. Soc. Dalton Trans. 1974, 233.
- ¹⁶⁸ M. A. Bennett, T.-N. Huang, T. W. Matheson, A. K. Smith, *Inorg. Synth.* **1982**, *21*, 74.
- ¹⁶⁹ B. F. G. Johnson, J. Lewis, I. E. Ryder, *J. Chem. Soc., Dalton Trans.* **1977**, 719.
 ¹⁷⁰ P. Kovacic, N. O. Brace, *Inorg. Synth.* **1960**, *6*, 172.
- ¹⁷¹ U. Koelle, B. Fuss, F. Khouzami, J. Gersdorf, *J. Organomet. Chem.* **1985**, 290,
 77.
- ¹⁷² H. D. Smith, Jr., M. F. Hawthorne, *Inorg. Chem.* **1974**, *13*, 2312.
- ¹⁷³ M. F. Hawthorne, D. C. Young, P. M. Garrett, D. A. Owen, S. G. Schwerin, F. N. Tebbe, P. A. Wegner, *J. Am. Chem. Soc.* **1968**, *90*, 862.

¹⁷⁴ Y.-K. Yan, D. M. P. Mingos, T. E. Müller, D. J. Williams, M. Kurmoo, J. *Chem. Soc., Dalton Trans.* **1994**, 1735.

¹⁷⁵ G. A. Olah, J. J. Svoboda, J. A. Olah, Synthesis 1972, 544.

- ¹⁷⁷ Д. Н. Лайков, Ю. А. Устынюк, Изв. АН, Сер. Хим. 2005, 804.
- ¹⁷⁸ J. P. Perdew, K. Burke, M. Ernzerhof, *Phys. Rev. Lett.* **1996**, 77, 3865.
- ¹⁷⁹ K. G. Dyall, J. Chem. Phys. **1994**, 100, 2118.
- ¹⁸⁰ D. N. Laikov, Chem. Phys. Lett. 2005, 416, 116.
- ¹⁸¹ D. N. Laikov, Chem. Phys. Lett. 1997, 281, 151.
- ¹⁸² E. Ya. Misochko, A. V. Akimov, V. A. Belov, D. A. Tyurin, D. N. Laikov, J. *Chem. Phys.* **2007**, *127*, 84301.
- ¹⁸³ K. Fukui, Acc. Chem. Res. **1981**, 14, 363.
- ¹⁸⁴ *ADF 2006.01*, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com.
- ¹⁸⁵ F. M. Bickelhaupt, E. J. Baerends, Rev. Comput. Chem. 2000, 15, 1.
- ¹⁸⁶ A. D. Becke, *Phys. Rev. A* **1988**, *38*, 3098.
- ¹⁸⁷ J. P. Perdew, *Phys. Rev. B* **1986**, *33*, 8822.
- ¹⁸⁸ E. van Lenthe, E. J. Baerends, J. G. Snijders, J. Chem. Phys. **1993**, 99, 4597.

¹⁸⁹ M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Jr. Montgomery, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W.

¹⁷⁶ K. Jonas, E. Deffense, D. Habermann, Angew. Chem. Int. Ed. Engl. 1983, 22, 716.

- Gill, B. G. Johnson, W. Chen, M. W. Wong, J. L. Andres, M. Head-Gordon, E. S.
- Replogle, J. A. Pople, Gaussian 98 (Revision A.6), Gaussian, Inc., 1998.
- ¹⁹⁰ F. Weigend, R. Ahlrichs, *Phys. Chem. Chem. Phys.* **2005**, *7*, 3297.
- ¹⁹¹ http://www.ipc.uni-karlsruhe.de/tch/tch1/TBL/tbl.html.
- ¹⁹² S. Trasatti, Pure Appl. Chem. **1986**, 58, 955.
- ¹⁹³ S. Miertš, E. Scrocco, Tomasi, Chem. Phys. 1981, 55, 117.
- ¹⁹⁴ G. A. Zhurko, *ChemCraft 1.6*, http://www.chemcraftprog.com, **2008**.