ЗАКЛЮЧЕНИЕ ДИССЕРТАЦИОННОГО СОВЕТА 24.1.161.01, СОЗДАННОГО НА БАЗЕ ФЕДЕРАЛЬНОГО ГОСУДАРСТВЕННОГО БЮДЖЕТНОГО УЧРЕЖДЕНИЯ НАУКИ ИНСТИТУТ ЭЛЕМЕНТООРГАНИЧЕСКИХ СОЕДИНЕНИЙ ИМ. А.Н.НЕСМЕЯНОВА РОССИЙСКОЙ АКАДЕМИИ НАУК, ПО ДИССЕРТАЦИИ НА СОИСКАНИЕ УЧЕНОЙ СТЕПЕНИ КАНДИДАТА НАУК

аттестационное дело №					
решение лиссертационного совета от	18	ноября	2021	г. №	27

О присуждении Моисеевой Александре Андреевне, гражданке Российской Федерации, ученой степени кандидата химических наук.

Диссертация «Разработка синтетических подходов к созданию гибридных молекул с цитостатическими свойствами» по специальностям 1.4.8. (химия элементоорганических соединений), 1.4.3. (органическая химия) принята к защите 06 сентября 2021 г. (протокол заседания №20) диссертационным советом 24.1.161.01, созданным на базе Федерального государственного бюджетного учреждения науки Институт элементоорганических соединений им. А.Н.Несмеянова Российской академии наук, 119991, ГСП-1, Москва, 119334, ул. Вавилова, 28, Приказ о создании совета №105/НК от 11.04.2012 г.

Соискатель Моисеева Александра Андреевна, «08» июня 1995 года рождения,

В 2018 году соискатель окончила Федеральное государственное бюджетное образовательное учреждение высшего образования «Российский химико-технологический университет имени Д.И. Менделеева» г. Москва, работает младшим научным сотрудником в Федеральном государственном бюджетном учреждении науки Институт элементоорганических соединений им. А.Н.Несмеянова Российской академии наук.

Диссертация выполнена в Лаборатории фосфорорганических соединений Федерального государственного бюджетного учреждения науки

Институт элементоорганических соединений им. А.Н.Несмеянова Российской академии наук.

Научные руководители — кандидат химических наук, Артюшин Олег Иванович, Федеральное государственное бюджетное учреждение науки Институт элементоорганических соединений им. А.Н.Несмеянова Российской академии наук, Лаборатория фосфорорганических соединений, старший научный сотрудник; доктор химических наук, Брель Валерий Кузьмич, Федеральное государственное бюджетное учреждение науки Институт элементоорганических соединений им. А.Н.Несмеянова Российской академии наук, Лаборатория фосфорорганических соединений, главный научный сотрудник.

Официальные оппоненты:

<u>Аверин Алексей Дмитриевич</u>, доктор химических наук, Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный университет им. М.В. Ломоносова», кафедра органической химии,

Бурилов Александр Романович, доктор химических наук, профессор, Институт органической и физической химии им. А.Е. Арбузова – обособленное структурное подразделение Федерального государственного бюджетного учреждения науки «Федеральный исследовательский центр «Казанский научный центр Российской академии наук», лаборатория элементоорганического синтеза им. А.Н. Пудовика, главный научный сотрудник

дали положительные отзывы на диссертацию.

Ведущая организация Федеральное государственное бюджетное учреждение науки «Институт органической химии им. Н.Д. Зелинского Российской академии наук» (город Москва) в своем положительном отзыве, утвержденном Егоровым Михаилом Петровичем, доктором химических наук, академиком РАН, директором ИОХ РАН, (Заключение составлено Терентьевым Александром Олеговичем, доктором химических наук, членом-корреспондентом РАН, заведующим Лаборатории исследования

гомолитических реакций, заместителем директора по научной работе) указала, что диссертационная работа Моисеевой Александры Андреевны полностью соответствует требованиям ВАК РФ к диссертациям на соискание ученой степени кандидата химических наук, установленным в п.п. 9-14 «Положения о порядке присуждения ученых степеней», утвержденного постановлением Правительства Российской Федерации №842 от 24 сентября 2013 года, а ее автор, Моисеева Александра Андреевна, несомненно, заслуживает присуждения ученой степени кандидата химических наук по специальностям 1.4.8. Химия элементоорганических соединений и 1.4.3. Органическая химия. Работа Моисеевой А.А. может быть рекомендована к использованию следующим ознакомлению И научным образовательным учреждениям: МГУ им. М.В. Ломоносова, ИОХ РАН им. Н.Д. Зелинского, РХТУ им. Д.И. Менделеева, Казанский научный центр РАН, СПбГТИ (ТУ).

Соискатель имеет 10 опубликованных работ, индексируемых в международных базах данных (Scopus, Web of Science), в том числе по теме диссертации опубликовано 6 работ, из них в рецензируемых научных изданиях, рекомендованных ВАК, опубликовано 5 работ, входящих в список РИНЦ опубликована 1 работа. Работы по теме диссертации включают 5 статей в журналах 2 и 3 квартиля и 1 статья (обзор) в журнале INEOS OPEN. По результатам диссертационного исследования получено 2 патента РФ. Диссертационное исследование представлено на 10 Всероссийских и международных конференциях и выставках. Опубликованные работы полностью отражают основные положения диссертационного исследования, в диссертации отсутствуют недостоверные сведения об опубликованных соискателем ученой степени работах.

Основные работы:

- 1. Brel V.K., Moiseeva A.A., Artyushin O.I., Anikina L.V., Klemenkova Z.S. Simple methods of modification of daunorubicin on the daunosamine nitrogen atom // Med. Chem. Res. 2021. Vol. 30, № 3. P. 564 573.
- 2. Moiseeva A.A. Anthracycline derivatives and their anticancer activity // INEOS

OPEN. -2019. - Vol. 2, No. 1. - P. 9-18.

- 3. Moiseeva A.A., Artyushin O.I., Anikina L.V., Brel V.K. Synthesis and antitumor activity of daunorubicin conjugates with of 3,4-methylendioxybenzaldehyde // Bioorg. Med. Chem. Lett. 2019. Vol. 29, № 19. P. 126617.
- 4. Brel V.K., Artyushin O.I., Moiseeva A.A., Sharova E.V., Buyanovskaya A.G., Nelyubina Y.V. Functionalization of bioactive substrates with a F₅SCH=CH moiety // J. Sulf. Chem. 2020. Vol. 41, № 1. P. 29 43.

На диссертацию и автореферат поступили отзывы от: 1. А.В. Еркина, к.х.н., доцента Санкт-Петербургского государственного технологического института (технического университета); 2. М.К. Грачева, д.х.н., профессора, заведующего кафедры органической химии Института биологии и химии Московского педагогического государственного университета; Ю.Г. Тришина, д.х.н., профессора, заведующего кафедрой органической химии Санкт-Петербургского государственного университета промышленных технологий и дизайна; 4. Е.Н. Олсуфьевой, д.х.н., профессор, г.н.с. ФГБНУ "Научно-исследовательский институт по изысканию новых антибиотиков имени Г.Ф. Гаузе" и А.Е. Щекотихина, д.х.н., профессора РАН, директора "Научно-исследовательский институт по изысканию новых антибиотиков имени Г.Ф. Гаузе".

Все отзывы положительные.

В отзывах указывается, что работа выполнена по актуальной тематике, обладает высокой научной новизной и практической значимостью. В диссертационной работе осуществлен синтез библиотеки новых производных антрациклиновых антибиотиков с противораковой активностью, которые прошли первичный скрининг на цитотоксичность. Поставленные цели и задачи успешно выполнены. Исследование является ценным вкладом в элементоорганическую и органическую химию. Автор работы заслуживает присуждения ученой степени кандидата химических наук по специальностям 1.4.8. – химия элементоорганических соединений (химические науки) и 1.4.3. – органическая химия (химические науки).

В отзывах содержатся следующие замечания критического характера:

- 1. В нескольких случаях автор кратко указывает на деструкцию антрациклинового остова при использовании тех или иных реагентов, например, при попытке ввести в реакцию аза-Михаэля даунорубицин с некоторыми акцепторами Михаэля. Было бы уместно для читателей прояснить (если это, конечно, возможно, на основании экспериментальных данных), что происходит с антрациклиновым остовом и с чем связано такое негативное действие именно этих реагентов.
- 2. Чем автор может объяснить столь сильное отличие в выходах продуктов восстановительного аминирования?
- 3. В диссертации большое внимание уделяется получению производных даунорубицина, содержащих пиперонильный фрагмент, что неслучайно, т.к. он обеспечил высокую цитотоксичность соединений против ряда раковых клеток. Однако в Обзоре литературы об этом заместители практически не упоминается, в связи с эти хотелось бы узнать, как автор догадался столь широко использовать его в своей работе.
- 4. Было бы интересно зарегистрировать спектры УФ хотя бы некоторых новых соединений, поскольку автор постоянно подчеркивает яркую окраску (разнообразные оттенки красного) полученных соединений.
- 5. В тексте диссертации встречается небольшое количество опечаток и неудачных выражений, а также ошибка в нумерации схемы.

Выбор официальных оппонентов и ведущей организации обусловлен тем, что д.х.н. Аверин А.Д., д.х.н. Бурилов А.Р., и сотрудники Федерального государственного бюджетного учреждения науки «Институт органической химии им. Н.Д. Зелинского Российской академии наук» являются крупными специалистами в области элементоорганической и органической химии.

Диссертационный совет отмечает, что на основании выполненных соискателем исследований:

Разработаны методы химической модификации даунорубицина по даунозоаминной части молекулы как с изменением аминной функции, так и без таковой, с помощью которых получены его новые производные. **Найдено**,

что восстановительное аминирование с использованием разнообразных ароматических альдегидов привело к получению серии из 14 производных даунорубицина, которые обладают высокой антипролиферативной активностью. Среди данных соединений выявлены и запатентованы 4 препарата-лидера. В ходе проведенного скрининга всех новых производных даунорубицина показаны основные закономерности «структура-активность» и доказано, что подходы, связанные с получением вторичных и третичных аминов исходного антрациклина, являются более продуктивными с точки зрения биологического отклика на проведенную химическую модификацию.

Теоретическая значимость исследования обоснована тем, что: *N*-функционализация исходного антрациклина была **проведена** с помощью различных подходов, позволивших получить новые производные даунорубицина, содержащие разнообразные фармакофорные группы, в том числе фтор- и фосфорзамещенные. Эти методы, отличающиеся простотой и высокой эффективностью, были **разработаны** с учетом особенностей молекулярной структуры исходного даунорубицина.

Значение полученных соискателем результатов исследования для практики подтверждается тем, что:

с помощью описанных подходов была получена библиотека новых производных даунорубицина. Скрининг полученных производных на линиях раковых клеток позволил выявить 4 соединения-лидера, существенно превосходящих исходный даунорубицин по антипролиферативному действию и обладающих низкими значениями острой токсичности. Эти соединения были запатентованы.

Оценка достоверности результатов исследования выявила:

для экспериментальных работ были использованы современные методы физико-химического анализа (спектроскопия ЯМР и ИК, масс-спектрометрия высокого разрешения), экспериментальные данные согласованы с литературными источниками;

теория построена на известных, проверяемых фактах, полученных экспериментальных зависимостях и соответствует современным

представлениям в научной литературе по теме диссертации;

идея базируется на обобщении огромного числа публикаций, посвященных методам модификации антрациклиновых антибиотиков, которые были приведены и проанализированы в литературном обзоре;

использованы известные подходы и соответствующие решаемым задачам методы обработки и теоретического анализа экспериментальных результатов; **установлено** качественное соответствие авторских результатов с данными по аналогичным соединениям, представленным в литературе.

Личный вклад соискателя заключается в постановке задач исследования, разработке подходов к их решению, непосредственном проведении экспериментов по синтезу исходных соединений и производных даунорубицина, а также в анализе и обобщении полученных результатов и их оформлении в виде научных публикаций и докладов.

В ходе защиты диссертации были высказаны следующие критические замечания:

- 1. Как идентифицировались полученные соединения? Какие методы использовались? Как можно доказать достоверность полученных данных?
- 2. Для всех ли соединений проводилась оценка строения с помощью массспектрометрии? Как именно это проводилось?
- 3. Когда вы подбирали методы модификации даунорубицина, вы учитывали известный механизм связывания этого соединения с азотистыми основаниями ДНК? Функциональные группы, которые вы вводили как-то способствовали или препятствовали этому связыванию?
- 4. С чем связаны не очень высокие выходы в реакциях прямого алкилирования в условиях межфазного катализа? Не происходило ли там О-алкилирования?
- 5. В реакции восстановительного аминирования происходит ли образование побочных процессов или такие выходы объясняются тем, что остается не прореагировавшее исходное соединение? Можно ли регенерировать исходные соединения?
- 6. Для фармакологического применения очень важна чистота получающихся

при этом соединений, каким образом очищали, подтверждали и какой чистоты достигали?

- 7. Как избежать побочных реакций пропаргилирования, арилирования по фенольной гидрокси-группе?
- 8. Зачем необходимо было вводить фосфор-, фтор- и серосодержащие группы в структуру даунорубицина? И что показали результаты биологических испытаний?
- 9. Удаётся ли как-то отделить целевое соединение от его возможно образующейся натриевой соли (по фенольной группе) в ходе реакции восстановительного аминирования?
- 10. Как разделялись моно- и дизамещенные амины даунорубицина, полученные после реакции прямого алкилирования в условиях межфазного катализа?

Соискатель Моисеева А.А. ответила на задаваемые ей в ходе заседания вопросы и привела собственную аргументацию:

- 1. Для всех соединений зарегистрированы спектры ЯМР ¹H, ¹³C, в случае наличия в молекуле гетероядер, таких как фосфор и фтор были зарегистрированы соответствующие этим ядрам спектры. Для всех производных есть данные элементного анализа, для некоторых строение оценивалось с помощью масс-спектрометрии. Рентгеноструктурные исследования провести не представлялось возможным из-за сложности роста качественного кристалла для этого.
- 2. Масс-спектрометрия была проведена для аминных производных даунорубицина, она была высокого разрешения, а методом ионизации был выбран электронный удар этого оказалось достаточно для наличия в спектрограмме молекулярного иона и отсутствия сильной фрагментации.
- 3. Во-первых нами было получено большое количество различных производных даунорубицина, у нас была большая библиотека таких соединений: с различными спейсерами, чтобы можно было спросить, как длина этого спейсера влияет на цитотоксичность, как влияет введенная фармакофорная группа. Функциональные группы, введенные в

даунорубицин, же могли потенциально способствовать связыванию.

- 4. В данной реакции в качестве целевых продуктов образуется сразу два целевых билдинг блока, поэтому общий выход данной реакции гораздо выше.
- 5. В данной реакции мы использовали альдегиды с различной реакционной способностью, в соответствии с этим часть из них, как мы предполагаем, способствовала деструкции антрациклинового скелета. Регенерировать после хроматографической очистки можно только исходный альдегид.
- 6. Чистоту соединений подтверждали по совокупности факторов: спектрам ЯМР, данным элементного анализа, масс-спектрометрии высокого разрешения. Мы понимаем, что еще необходимы и другие методы физико-химического анализа (ВЭЖХ, определение содержания тяжелого металлов и др.).
- 7. Реакции по аминогруппе идут быстрее, а также в наших условиях происходит алкилирование только по аминогруппе.
- 8. Бисфосфонаты известные лекарственные соединения для терапии опухолей костей, то есть их введение должно было улучшить цитотоксические свойства. Серо- и фторсодержащие группы были введены в структуру даунорубицина с целью увеличения липофильности получающегося при этом соединения. Цитотоксичность таких соединений оказалась на умеренном уровне, при этом такие соединения показывают высокую избирательность действия на опухолевые клетки.
- 9. Для выделения данных производных из реакционной смеси мы применяли экстрагирование – при этом полярные побочные или промежуточные продукты оказывались в водной части, а целевой продукт в части с органическим растворителем.
- 10. С помощью колоночной хроматографии эти соединения удается легко отделить друг от друга, используя изократическое элюирование и систему хлороформ с постепенно увеличивающимся количеством метанола, в некоторых случаях необходимо было добавлять пару капель водного раствора аммиака. Силикагель при этом используется достаточно мелкий для улучшения разделения, а сам процесс происходит в течение 1-3 дней.

На заседании 18 ноября 2021 г. диссертационный совет принял решение за разработки в области химии биологически активных соединений, вносящие значительный вклад в развитие элементоорганической и органической химии, присудить Моисеевой А.А. ученую степень кандидата химических наук.

При проведении тайного голосования диссертационный совет в количестве 21 человек, из них 10 докторов наук по специальности 1.4.8.- Химия элементоорганических соединений и 4 доктора наук по специальности 1.4.3. - Органическая химия, участвовавших в заседании, из 28 человек, входящих в состав совета, дополнительно введены на разовую защиту 0 человек, проголосовали: за – 21, против – 0, недействительных бюллетеней – 0.

Заместитель председателя

Диссертационного совета 24.1.161.01

д.х.н.

Любимов Сергей Евгеньевич

Ученый секретарь

Диссертационного совета 24.1.161.01

K.X.H.

Ольшевская Валентина Антоновна

18 ноября 2021 г.