ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ ИНСТИТУТ ЭЛЕМЕНТООРГАНИЧЕСКИХ СОЕДИНЕНИЙ ИМ. А.Н. НЕСМЕЯНОВА РОССИЙСКОЙ АКАДЕМИИ НАУК

На правах рукописи

Чекуров Кирилл Евгеньевич

«СИНТЕЗ АМФИФИЛЬНЫХ ДИБЛОК-СОПОЛИМЕРОВ И ПОЛУЧЕНИЕ СУПЕРГИДРОФОБНЫХ ПОКРЫТИЙ НА ИХ ОСНОВЕ"

02.00.06 Высокомолекулярные соединения

АВТОРЕФЕРАТ

диссертации на соискание ученой степени

кандидата химических наук

Москва 2021

Работа выполнена в лаборатории физической химии полимеров и лаборатории компьютерного моделирования макромолекул Федерального государственного бюджетного учреждения науки Института элементоорганических соединений им. А.Н. Несмеянова Российской академии наук (ИНЭОС РАН)

<u>Научный</u> Кандидат химических наук, старший научный сотрудник руководитель лаборатории физической химии полимеров ИНЭОС РАН, г. Москва

Барабанова Анна Ивановна

Официальные Зезин Алексей Александрович

<u>оппоненты:</u> Доктор химических наук, главный научный сотрудник лаборатории радиационного модифицирования полимеров ФГБУН Институт синтетических полимерных материалов им. Н.С. Еникополова РАН, г. Москва

Межуев Ярослав Олегович

Доктор химических наук, доцент, заведующий кафедрой биоматериалов Федерального государственного бюджетного образовательного учреждения высшего образования «Российский химико-технологический университет имени Д.И. Менделеева», г. Москва

<u>Ведущая</u> ФГБОУ ВО "Тверской государственный университет", г. Тверь организация:

Защита диссертации состоится в 11:00 часов 25 мая 2021 года на заседании диссертационного совета Д 002.250.02 по присуждению ученой степени кандидата химических наук при ИНЭОС РАН по адресу: 119991, ГСП-1, Москва, ул. Вавилова, 28.

С диссертацией можно ознакомиться в библиотеке ИНЭОС РАН.

Автореферат разослан " 2021 года.

Ученый секретарь

диссертационного совета Д 002.250.02

Кандидат химических наук

Беломоина Н.М.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ.

Актуальность работы. В последнее время большое внимание уделяется супергидрофобных покрытий, характеризующихся созданию высокими значениями краевых углов (КУ) смачивания водой (КУ > 150 °) и низкими величинами гистерезиса КУ (ГКУ) (ГКУ < 10 °). Одним из подходов для создания таких покрытий является реализация состояния Касси, при котором внутри полостей рельефа поверхности стабилизированы пузырьки воздуха, сводящие к минимуму площадь поверхности контакта между жидкой и твердой фазами. Состояние Касси обычно возникает на наношероховатых поверхностях, покрытых материалом с низкой поверхностной энергией. Наношероховатость поверхности придают помощью химического травления, литографии, С лазерного микроструктурирования, наноэлементов различной природы нанесения (наночастиц, нановолокон и др.) и другими способами. Для снижения удельной свободной поверхностной энергии, поверхность до или после придания ей шероховатости, обрабатывают соединениями, содержащими неполярные группы, -CH₂, -CH₃, -CF₂, -CF₃. Минимально такие как возможные значения поверхностной энергии (6-7 мДж/м²), могут быть достигнуты при плотной упаковке -CF₃-групп, которая наиболее эффективно формируется в соединениях, длинные перфторалкильные фрагменты содержащих с числом атомов перфторированного углерода в мономерных звеньях более шести (C_nF_{2n+1}, где n ≥ 6)¹. Однако длинные фторированные фрагменты не разлагаются в природе, а деструкция покрытий сопровождается выделением токсичных перфтороктансульфоновой и перфтороктановой кислот. В связи с этим чрезвычайно актуальным является создание супергидрофобных покрытий из полимеров с числом атомов фтора в мономерных звеньях меньше шести.

Новым подходом для достижения стабильного состояния Касси, предлагаемым в настоящей работе, является создание супергидрофобных покрытий нанесением на поверхность амфифильных диблок-сополимеров (ДС),

¹ Nishino T., Meguro M., Nakamae K., Matsushita M., Ueda Y. The lowest surface free energy based on $-CF_3$ alignment // Langmuir — 1999. — V.15. — No.14. — P. 4321.

состоящих из гидрофобных фторированных и гидрофильных якорных полимерных блоков. Такие ДС в результате микрофазного расслоения придадут наношероховатость покрытиям, что в сочетании с низкой поверхностной энергией фторированных блоков обеспечит реализацию состояния Касси, и, как следствие, улучшит поверхностные свойства покрытий. Наличие гидрофильного якорного блока гарантирует химическое связывание ДС с обрабатываемой поверхностью в присутствии сшивающего агента.

В литературе исследованы в основном покрытия из ДС с разным химическим составом, имеющие одинаковую длину или фторированного, или полимерных блоков. К настоящему времени якорного известно, что поверхностные свойства пленок из таких сополимеров не зависят от их химического состава, а определяются только степенью покрытия обрабатываемой поверхности, которая, в свою очередь, зависит от концентрации сополимеров. При этом, поскольку наношероховатость поверхности возникает в результате микрофазного разделения ДС, можно ожидать, что изменение длин обоих полимерных блоков, определяемых их степенью полимеризации (P_n), или соотношением между длинами полимерных блоков в ДС, будет влиять на поверхностные свойства покрытий. В связи с этим актуальным является создание и изучение покрытий из ДС с разными длинами обоих полимерных блоков.

Целью работы направленный амфифильных является синтез фторированных ДC основе 2,3,4,5,6-пентафторстирола $(\Pi \Phi C)$ 2на И гидроксиэтилметакрилата (ГЭМА) двухстадийной полимеризацией с обратимой присоединения-фрагментации передачей цепи по механизму (ОПЦполимеризация) с разными длинами как фторированного (поли(2,3,4,5,6пентафторстирол) (ППФС)), так и якорного (поли(2-гидроксиэтилметакрилат) (ПГЭМА)) полимерных блоков, и исследование поверхностных свойств покрытий из ДС на гладких (кремниевые пластины) и шероховатых (хлопкополиэфирная ткань) подложках.

Для достижения поставленной цели были решены следующие задачи:

- исследована ОПЩ-полимеризация ПФС и ГЭМА с целью нахождения оптимальных условий синтеза ДС с разными длинами и соотношением между длинами ПГЭМА и ППФС блоков (*P*^{n ПФС}/*P*^{r ГЭМА}, где *P*^{n ПФС} и *P*^{r ГЭМА} степень полимеризации ПФС и ГЭМА);
- исследованы химический состав, морфология, гидрофобные и олеофобные свойства покрытий из ДС с разными длинами ПГЭМА и ППФС блоков и соотношением P_n^{ПФС}/P_n^{ГЭМА} на кремниевых пластинах и на хлопкополиэфирной ткани (65% хлопок, 35% ПЭ) для нахождения оптимальных условий получения супергидрофобных покрытий.

Научная новизна и практическая значимость.

1. Впервые исследована полимеризация ПФС и ГЭМА в ДМФА в присутствии ОПЦ-агента: 2-циано-2-пропил-дитиобензоата (ЦПТБ) и инициатора динитрила азобисизомасляной кислоты (ДАК). Впервые определены условия протекания полимеризации ПФС и ГЭМА по механизму ОПЦ-полимеризации: [ПФС] / [ЦПТБ] / [ДАК] = 740 / 1.9 / 1 и [ГЭМА] / [ЦПТБ] / [ДАК] = 250 / 2.5 / 1.

2. Исследована кинетика полимеризации ПФС в присутствии ЦПТБ и ПГЭМА-ОПЦ-агента с концевой дитиобензоатной группой *in situ* с помощью ¹Н ЯМР-спектроскопии. Установлено, что как низкомолекулярный, так и высокомолекулярный ОПЦ-агенты являются эффективными при полимеризации ПФС. Определена константа передачи цепи на ЦПТБ $C_{\rm n} = 77.4 \pm 2.2 >> 1$.

3. Показано, что полимеризация ПФС в присутствии ПГЭМА-ОПЦ-агента с концевой дитиобензоатной группой протекает практически без индукционного периода со скоростью, превышающей более чем в 1.5 раза скорость полимеризации ПФС в присутствии ЦПТБ.

4. Установлено, что повышение локальной концентрации ПФС в зоне реакции за счет солюбилизации ПФС в гидрофобных ядрах мицеллоподобных агрегатов, образованных макромолекулами ДС, является причиной увеличения скорости полимеризации ПФС в присутствии ПГЭМА-ОПЦ-агента.

5. Обнаружено, что появление индукционного периода при полимеризации ПФС в присутствии ЦПТБ связано с формированием неактивных комплексов между мономером и низкомолекулярным ОПЦ-агентом.

6. Найдены условия получения узкодисперсных ДС, а именно: 1) определена последовательность стадий синтеза ДС путем полимеризации ПФС в присутствии ПГЭМА-ОПЦ-агента 2) найдены соотношения между концентрациями ПГЭМА-ОПЦ-агента и инициатора ДАК [ПГЭМА] / [ДАК] = 4÷5 / 1, при которых полимеризация ПФС протекает контролируемым образом.

7. Показано, что основным фактором, определяющим превращение гидрофобных поверхностей в супергидрофобные и обеспечивающим стабилизацию состояния Касси, является соотношение длин ППФС и ПГЭМА блоков в ДС $P_n^{\Pi\Phi C}/P_n^{\Gamma \Im MA}$.

Апробация работы. Результаты диссертационного исследования были представлены на следующих конференциях: 4th International Conference on Bioinspired and Biobased Chemistry & Materials. (Ницца, Франция, 2018), Международная научная конференция студентов, аспирантов и молодых ученых "Ломоносов-2019", (Москва, Россия, 2019), XXI Mendeleev congress of general and applied chemistry (Санкт-Петербург, Россия, 2019), Программа научных чтений "Основоположники и основатели ИНЭОС" (Москва, Россия, 2020).

Публикации. Результаты работы опубликованы в 5 статьях в журналах, рекомендованных ВАК, и в 3 тезисах докладов на конференциях.

Личный вклад автора заключается в непосредственном участии во всех этапах работы – в планировании и выполнении экспериментов, а также в обсуждении результатов, их анализе и оформлении публикаций.

Структура и объем работы. Диссертация состоит из введения, трех глав, выводов и списка литературы (88 наименований). Работа изложена на 99 страницах, включая 17 схем, 32 рисунка и 8 таблиц.

Работа выполнена в ИНЭОС РАН в лаборатории физической химии полимеров и лаборатории компьютерного моделирования макромолекул в соответствии с планами научно-исследовательских работ ИНЭОС РАН и при

финансовой поддержке гранта Российского Научного Фонда (РНФ № 17-13-01359).

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ.

Во введении обоснована актуальность научного исследования, поставлены задачи и определены цели диссертационной работы, отмечена научная новизна и практическая значимость результатов.

В первой главе приведен анализ литературных данных по теме диссертации.

Во второй главе описаны методики получения и способы исследования полимеров и полимерных покрытий.

В третьей главе представлены оригинальные результаты экспериментальных исследований по теме диссертации. Глава состоит из двух частей. Первая часть посвящена исследованию ОПЦ-полимеризации ПФС, ГЭМА и нахождению оптимальных условий направленного синтеза ДС. Вторая часть посвящена получению, исследованию химического состава и свойств покрытий из синтезированных полимеров.

1. Синтез амфифильных ДС

Синтез ДС осуществлялся двухстадийной ОПЦ-полимеризацией. Были решены следующие задачи: подобраны условия, обеспечивающие протекание полимеризации обоих сомономеров по механизму ОПЦ-полимеризации; определена последовательность стадий синтеза ДС.

Полимеризация ПФС

Полимеризацию ПФС ([ПФС] = 2.0 моль/л), инициированную ДАК ([ДАК] = 2.7 × 10⁻³ моль/л), проводили в ДМФА при мольном соотношении [ЦПТБ] / [ДАК] = 1.9 при 60°С. Полученные полимеры охарактеризованы методами ГПХ и ¹Н ЯМР-спектроскопии.

Рис. 1. Кривые ММР для ППФС, полученных при конверсиях q = 12 (1), 19 (2), 33 (3) и 47 % (4) (а) и зависимости M_n (1) и M_w/M_n (2) от q (б).

Сдвиг унимодальных кривых ММР с ростом конверсии ПФС в сторону больших масс (Рис. 1а), и наблюдаемое изменение M_n и M_w/M_n (Рис. 1б) указывают на ОПЦ-механизм реакции полимеризации ПФС в присутствии ЦПТБ. Эффективность выбранного ОПЦ-агента доказывают также результаты количественной оценки константы передачи $C_{\Pi} = 77.4 \pm 2.2 >> 1$.

Исследование кинетики полимеризации ПФС в присутствии ЦПТБ непосредственно в ходе процесса (*in situ*) с помощью спектроскопии ¹Н ЯМР показало, реакция протекает с индукционным периодом ($\tau = 150$ мин) (Рис. 2, кривая 1).

Рис. 2. Зависимость конверсии ПФС от времени полимеризации ПФС в присутствии ЦПТБ (1) и ПГЭМА-ОПЦ-агента (2). [ПФС] = 2.0 моль/л, [ДАК] = 1.0×10^{-3} моль/л, [ЦПТБ] / [ДАК] = 1.9, [ПГЭМА] / [ДАК] = 4.0. 50°С, ДМФА-d7.

Установлено, что появление индукционного периода обусловлено образованием AMD - продукта присоединения ЦПТБ и ПФС. (Схема 1).

Схема 1. Возможные структуры аддуктов ПФС и ЦПТБ.

Концентрации ЦПТБ и аддуктов в ходе полимеризации рассчитаны по интегральным интенсивностям сигналов, характеризующих *N*-метильные протоны уходящей группы ЦПТБ (AD) (2.00 м.д.) и аддуктов AMD (1.57 и 1.47 м.д.) и AM₂D (1.45, 1.38, 1.35 и 1.33 м.д.), (Рис. 3).

Рис. 3. Увеличенные фрагменты ¹Н ЯМР-спектров реакционных мономернополимерных смесей в интервале хим. сдвигов 2.01 ÷ 1.98 м.д. и 1.60 ÷ 1.22 м.д. до полимеризации q = 0 % и после полимеризации ПФС вплоть до q = 2.36 %. [ПФС] = 2 моль/л, [ДАК] = 2.7 × 10⁻³ моль/л, [ЦПТБ] = 5.3 × 10⁻³ моль/л, 50°С, ДМФА-d7.

Во время индукционного периода, когда полимеризация ПФС еще не началась, а концентрация ЦПТБ уменьшается (Рис. 4, кривая 1), происходит образование аддукта с одним мономерным звеном AMD (Рис. 4, кривая 2). После практически полного расходования ЦПТБ наблюдается образование аддуктов с более высокой молекулярной массой AM₂D, т.е. начинается полимеризация ПФС.

Рис. 4. Зависимость концентраций ЦПТБ (AD) (1) и аддуктов AMD (2) и AM₂D (3) от времени полимеризации ПФС в присутствии ЦПТБ. [ПФС] = 2 моль/л, [ДАК] = 2.7×10^{-3} моль/л, [ЦПТБ] = 5.3×10^{-3} моль/л, 50° С, ДМФА-d7.

Таким образом, детальное исследование полимеризации ПФС в присутствии ЦПТБ показало, что реакция протекает с индукционным периодом, который обусловлен образованием неактивных продуктов присоединения ЦПТБ и ПФС.

Полимеризация ГЭМА в присутствии ЦПТБ

Полимеризацию ГЭМА проводили в ДМФА при 60°С при [ГЭМА] = 2 моль/л, [ДАК] = 8 × 10⁻³ моль/л при мольном соотношении [ЦПТБ] / [ДАК] = 2.5 и 5 при 60°С. Условия полимеризации ГЭМА в присутствии ЦПТБ и молекулярномассовые (ММ) характеристики ПГЭМА представлены в Табл. 1.

.]	Габлица	1. 3	словия	пол	имеризац	ии ГЭ	MA	и ММ	характерис	стики Ш ЭМА	L
										-	

Образец ¹⁾	[ЦПТБ] /	Время,	$a^{0/2}$		M/M		
oopusei	[ДАК]	Ч	9, 70	теор.	¹ H ЯМР	ГПХ	1,1 W, 1,1 U
H ₅₄	2.5 / 1	3	13	2.0	7.0	11.5	1.36
H ₃₈	2.5 / 1	3	14	2.0	4.9	7.5	1.35
H ₅₈	2.5 / 1	4	32	4.4	7.6	14.4	1.34
H ₆₄	2.5 / 1	5	40	5.4	8.4	15.2	1.3
H ₆₅	2.5 / 1	6	44	6.0	8.5	15.8	1.29
H ₇₈	2.5 / 1	18	91	12	10.2	19.1	1.24
H ₃₂	5 / 1	3	12	1.7	4.1	6.5	1.23

¹⁾ В шифре для ПГЭМА буква «Н» обозначает звено ГЭМА. Подстрочный индекс указывает степень полимеризации ГЭМА.

²⁾ Конверсию (q) определяли гравиметрически.

Синтезированные ПГЭМА характеризуются унимодальными кривыми ММР (Рис. 5а). Сдвиг кривых ММР в сторону более высоких ММ, а также линейное увеличение M_n ПГЭМА (Рис. 5б) с ростом конверсии мономеров q, и близкие к единице значения M_w/M_n указывают на протекание полимеризации мономера в выбранных условиях по механизму ОПЦ-полимеризации.

Исследование кинетики полимеризации ПФС и ГЭМА показало, что обе реакции характеризуются первым порядком по мономеру.

Рис. 5. Кривые ММР для ПГЭМА, полученных при конверсиях q = 13 (1), 32 (2), 44 (3) и 91 % (4), [ЦПТБ] / [ДАК] = 2.5 / 1 (а); и зависимости M_n (1) и M_w/M_n (2) от q (б).

Таким образом, выбранный ОПЦ-агент является эффективным в полимеризации как ПФС, так и ГЭМА. ОПЦ-полимеризацией ПФС и ГЭМА в присутствии ЦПТБ в ДМФА получены полимеры с узким ММР (для ППФС: $M_n = 11.9 \div 29.3 \times 10^3$ г/моль; $M_w/M_n = 1.17 \div 1.41$; для ПГЭМА: $M_n = 6.5 \div 19.1 \times 10^3$ г/моль; $M_w/M_n = 1.24 \div 1.36$).

Синтез ДС

ДС можно синтезировать или полимеризацией ГЭМА в присутствии ППФС-ОПЦ-агента, или полимеризацией ПФС в присутствии ПГЭМА-ОПЦ-агента.

Полимеризация ГЭМА, инициируемая ДАК, ингибируется ППФС-ОПЦагентом, полученным полимеризацией ПФС в присутствии ЦПТБ. Неспособность ППФС-ОПЦ-агентов реинициировать полимеризацию ГЭМА, вероятно, связана с высокой устойчивостью к фрагментации интермедиатов, образованных ППФС-ОПЦ-агентами и растущими радикалами². Поэтому ДС синтезировали полимеризацией ПФС в присутствии ПГЭМА-ОПЦ-агентов с разными ММ (Схема 2).

Схема 2. Синтез ПГЭМА (I) и ДС (II).

Реакцию проводили при 60°С в ДМФА в присутствии ДАК ([ДАК] = 1 × 10⁻³ моль/л) при двух соотношениях [ПГЭМА] / [ДАК] = 2 и 5. Условия синтеза и ММ характеристики продуктов реакции показаны в Табл. 2.

Таблица 2. Условия полимеризации ПФС и ММ характеристики ДС

		$q, \%^{2)}$	ДС					
Образец ¹⁾	[ПГЭМА]/[ДАК]		ГП	X	Состав мол. %			
			$M_{\rm n} \times 10^{-3}$	$M_{ m w}/M_{ m n}$	ГЭМА	ПФС		
H ₂₃₆ -F ₂₃₆	2 / 1	17	34.7	1.53	50	50		
H ₂₃₆ -F ₄₃₈	2 / 1	27	61.6	1.40	35	65		
H ₇₈ -F ₈₅	4 / 1	29	36.6	1.30	48	52		
H ₇₈ -F ₁₀₃	4 / 1	43	41.7	1.25	43	57		
H ₃₈ -F ₁₂₀	5 / 1	40	35.8	1.22	24	76		
H ₃₂ -F ₁₁₃	5 / 1	32	31.3	1.08	22	78		
H ₃₂ -F ₁₂₈	5 / 1	45	33	1.04	20	80		
H ₃₂ -F ₁₉₇	5 / 1	46	40	1.05	14	86		

¹⁾ В шифре для ДС буквы «Н» и «F» обозначают мономерные звенья ГЭМА и ПФС. Подстрочные индексы указывают степень полимеризации обоих сомономеров. Степень

² Moad G., Rizzardo E., Thang S.H., Living radical polymerization by the RAFT process A second update // Aust. J. Chem. - 2009. - V. 62. - P. 1402-1472

полимеризации ПФС ($P_n^{\Pi\Phi C}$) рассчитана с учетом содержания звеньев ПФС в сополимере по уравнению: $P_n^{\Pi\Phi C} = P_n^{\Gamma\Im A} \times m_{\Pi\Phi C} / m_{\Gamma\Im A}$, где $m_{\Pi\Phi C}$ и $m_{\Gamma\Im A}$ - содержание звеньев ПФС и ГЭМА в ДС, согласно данным элементного анализа.²⁾ Конверсию (*q*) определяли гравиметрически

Полимеризация ПФС при мольном соотношении [ПГЭМА] / [ДАК] = 2 / 1 приводит к образованию не только ДС, но и побочного продукта неконтролируемой радикальной полимеризации ПФС. На кривых ММР продуктов полимеризации ПФС наряду с основным пиком от ДС заметно небольшое плечо (Рис. 6а, кривые 2 и 3). С ростом продолжительности реакции от 18 до 24 ч, как основной пик, так и плечо на кривых ММР сдвигаются в сторону более высоких ММ.

Из сравнения кривых ММР для ПГЭМА-ОПЦ-агента и продуктов полимеризации ПФС в присутствии ПГЭМА-ОПЦ-агента (H₃₂) при [ПГЭМА] / [ДАК] = 5 / 1 (Рис. 56) видно, что кривые ММР продуктов являются унимодальными, симметричными и сдвигаются с ростом q от кривой ММР исходного ПГЭМА к более высоким ММ, что указывает на то, что полимеризация ПФС протекает по механизму ОПЦ-полимеризации с образованием ДС без побочных продуктов радикальной полимеризации ПФС. Относительно низкая полидисперсность ($M_w/M_n = 1.04 \div 1.30$) также подтверждает контролируемый характер полимеризации ПФС в присутствии ПГЭМА.

Рис. 6. Кривые ММР для ПГЭМА (H_{236}) (1) и продуктов полимеризации ПФС в присутствии ПГЭМА при q = 17, (H_{236} - F_{236}) (2) и 27% (H_{236} - F_{438}) (3) при [ПГЭМА] / [ДАК] = 2 / 1 (а); кривые ММР для ПГЭМА (H_{32}) (1) и продуктов полимеризации

ПФС в присутствии ПГЭМА при q = 32 (H₃₂-F₁₁₃) (2), 45 (H₃₂-F₁₂₈) (3) и 46 % (H₃₂-F₁₉₇) (4) при [ПГЭМА] / [ДАК] = 5 / 1 (б).

Таким образом, найдены условия направленного синтеза ДС двухстадийной ОПЦ-полимеризацией, а именно: 1) определена последовательность стадий синтеза: ДС получены путем полимеризации ПФС в присутствии ПГЭМА-ОПЦ-агента; 2) найдены соотношения [ПГЭМА] / [ДАК] = 4÷5 / 1, при которых полимеризация ПФС протекает по механизму ОПЦ-полимеризации без образования побочных продуктов радикальной полимеризации; 3) синтезированы ДС с $M_n = 31.3 \div 41.7 \times 10^3$ г/моль разного состава ([ППФС] от 37 до 86 мол.%).

Исследование кинетики полимеризации ПФС в присутствии ПГЭМА-ОПЦагента *in situ* с помощью ¹Н ЯМР-спектроскопии показало, что ПГЭМА-ОПЦагент полностью расходуется уже на ранних конверсиях мономера (q < 0.3%), при этом кривые ММР продуктов полимеризации являются унимодальными, что указывает на высокое значение C_{Π} , (но не позволяет количественно оценить C_{Π}) и высокую эффективность ПГЭМА-ОПЦ-агента. Линейная зависимость ln([M]₀/[M]) от времени реакции (Рис. 2, кривая 2) означает, что реакции характеризуется первым порядком по мономеру. Полимеризация ПФС в присутствии ПГЭМА-ОПЦ-агента протекает с более высокой скоростью, чем полимеризация ПФС в присутствии ЦПТБ и без индукционного периода. (Рис. 2, кривая 2).

Причиной более высокой скорости полимеризации ПФС в присутствии ПГЭМА-ОПЦ-агента является повышение локальной концентрации гидрофобного ПФС в зоне реакции вследствие ассоциативного поведение диблоксополимерных макромолекул, формирующихся в реакционной системе во время полимеризации. Очевидно, в ходе реакции при 60°С в ДМФА, селективном ПГЭМА, при достижении определенной диблокрастворителе для a сополимерные растущие радикалы образуют межцепные полимерные ассоциаты (агрегаты), в которых гидрофобные ППФС-блоки в компактизированных конформациях окружены сольватированными ПГЭМА-блоками.

Формирование межцепных агрегатов в процессе полимеризации ПФС подтверждено исследованием поведения разбавленного раствора H_{180} - F_{195} при $[H_{180}$ - $F_{195}] = 1$ мг/мл в ДМФА при 60°С методом динамического рассеяния света (ДРС). На кривой распределения интенсивности рассеяния света по размеру частиц наблюдается два пика: минорный пик при $R_h = 13.5$ и основной пик при $R_h = 100$ нм, которые можно отнести к макромолекулам и агрегатам, соответственно (Рис. 7). По мере формирования ППФС-блока и уменьшения количества ПФС мономера начинается микрофазное расслоение системы с образованием мицеллоподобных агрегатов с ППФС ядром.

Рис. 7. Зависимость интенсивности рассеяния света под углом 150° от радиуса частиц ("невзвешенное" распределение) для раствора H_{180} - F_{195} в ДМФА при 60°С. $[H_{180}$ - $F_{195}] = 1$ мг/мл.

Таким образом, в выбранных условиях полимеризация ПФС в присутствии ПГЭМА-ОПЦ-агента протекает со скоростью, превышающей скорость полимеризации ПФС в присутствии ЦПТБ, и практически без индукционного периода. Более высокая скорость полимеризации ПФС в присутствии ПГЭМА-ОПЦ-агента обусловлена повышением локальной концентрации мономера в мицеллоподобных агрегатах с ППФС ядром.

2. Получение и исследование свойств покрытий из амфифильных ДС

Покрытия из синтезированных полимеров на шероховатой подложке (хлопкополиэфирная ткань) готовили погружением образцов хлопкополиэфирной ткани в раствор полимеров в ДМФА с добавлением сшивающего агента гексаметилендиизоцианата (ДЦ) (Табл. 3). Наличие ОН-групп в якорном ПГЭМА

блоке в присутствии ДЦ обеспечивает химическое связывание ДС с волокнами ткани.

Химический состав и морфология поверхности тканевых покрытий

Химический состав поверхности тканевых покрытий исследовали с помощью ИК-спектроскопии и энергодисперсионной рентгеновской спектроскопии (СЭМ-ЭДС).

ДС химически связываются с поверхностью ткани. На ИК-спектре модифицированной ткани, после промывки в ДМФА с последующим центрифугированием, сохраняется полоса поглощения 1524 см⁻¹, характеризующая валентные колебания С-F-групп в ароматических соединениях.

Количественная оценка содержания элементов С, О и F на поверхности исходной ткани, а также тканевых образцов, покрытых ППФС и H₃₂-F₁₁₃, H₃₂-F₁₂₈ и H₃₂-F₁₉₇ при [ГЭМА] / [ДЦ] = 1 / 1, методом СЭМ-ЭДС, показаны на Рис. 8 и в Табл. 3.

Таблица 3.	Условия	приготовления	И	химический	состав	поверхности	тканевых
образцов из	данных (СЭМ-ЭДС					

	Per	Процентное содержание атомов С, О и F на							
Образец	приго	отовления	поверхности хлопкополиэфирной ткани						
ооризец	ПО	крытий		эксп.		теор.			
	ДС	[ГЭМА]/[ДЦ]	C, %	O,%	F, %	C, %	O,%	F, %	
1	исход	58.2	41.8	-	-	-	-		
5	F ₁₅₁ -		77.2	31.3	1.5	50.0	0	50.0	
8-3	H ₃₈ -F ₁₂₀ 1 / 1		60.9	38.4	0.8	50.5	6.5	40.4	
10-1	H_{32} - F_{113}	1 / 1	57	41.1	1.8	50.4	5.9	41.2	
10-2	H_{32} - F_{128}	1 / 1	62.2	34.1	3.7	50.3	5.3	42.0	
10-3	H_{32} - F_{197}	1 / 1	68.1	12.1	19.7	50.0	3.6	44.0	

Видно, что увеличение длины ППФС блока значительно (более чем в 20 раз) повышает содержание атомов F на поверхности ткани. Наибольшее содержание атомов F на поверхности ткани демонстрирует сополимер H₃₂-F₁₉₇. Вероятно, это связано с тем, что увеличение длины фторированного блока в ДС

облегчает его миграцию на поверхность покрытий из ДС, что имеет решающее значение для приготовления супергидрофобных покрытий с низкой поверхностной энергией.

Рис. 8. СЭМ-ЭДС спектры исходной хлопкополиэфирной ткани (a) и тканей, модифицированных нанесением H_{32} - F_{113} (б), H_{32} - F_{128} (в) и H_{32} - F_{197} (г). [ГЭМА] / [ДЦ] = 1 / 1.

Проведена оценка энергетических характеристик поверхности полимерных пленок, нанесенных методом *spin-coating* на гладкие подложки (кремниевые пластины), предварительно обработанные кипячением в 30% растворе H₂O₂ для формирования силанольных SiOH групп на их поверхности. Пленки из ДС характеризуются более высокими КУ смачивания водой и дийодметаном (ДИ): $\theta^{H_2O} = 108 \pm 2^\circ$ и $\theta^{CH_2I_2} = 83 \pm 1^\circ$, чем пленки из ППФС ($\theta^{H_2O} = 98 \pm 1^\circ$ и $\theta^{CH_2I_2} = 74 \pm 1^\circ$) (Табл. 4).

Таблица 4. КУ смачивания водой и ДИ, и значения поверхностной энергии, а также дисперсионной и полярной составляющих поверхностной энергии пленок из ППФС и ДС

Образец	$ heta^{H_2O}$	$ heta^{CH_2I_2}$	γ_{SV}^p , мДж/м ²	γ^d_{SV} ,мДж/м 2	<i>γ_{SV}</i> , мДж/м ²
ППФС	98	74	2.4	18.6	21.0
H ₃₂ -F ₁₉₇	106	82	1.3	15.3	16.6
Н ₃₂ -F ₁₉₇ + ДЦ	108	83	1.0	15.0	16.0

Пленки из H₃₂-F₁₉₇, приготовленные с ДЦ, имеют более низкие значения, как суммарной поверхностной энергии, так и ее дисперсионной и полярной компонент, чем пленки из ППФС и из ДС без ДЦ. Это обусловлено тем, что ДС, ковалентно связанный с гидрофильной поверхностью, полностью ее покрывает, создавая тем самым более энергетически однородную поверхность.

Морфологию пленок из ДС на гладких подложках (стекло) исследовали с помощью ПЭМ и АСМ. Показано, что для покрытия из H₇₈-F₁₀₃ характерна сферическая морфология из ППФС сфер с диаметром 30 нм, диспергированных в матрице из ПГЭМА (Рис. 9 а). На Рис. 9 (б) показано двухмерное АСМ-изображение пленки из сополимера H₃₂-F₁₉₇, химически пришитого на гидрофилизированное стекло. Видно, что нанесение ДС делает поверхность стекла наношероховатой, что является необходимым условием для создания супергидрофобного покрытия.

Рис. 9. ПЭМ-изображение пленки из H_{78} - F_{103} (а) и АСМ-изображение H_{32} - F_{197} (б) на стекле.

Морфология исходной ткани и образцов, покрытых ППФС и ДС, исследована с помощью сканирующей электронной микроскопии (СЭМ). Если поверхность волокон исходной ткани выглядит достаточно гладкой, то волокна с покрытием из ДС характеризуются наношероховатостью, которая появляется в результате микрофазного разделения амфифильных ДС (Рис. 10).

Рис. 10. СЭМ-изображения хлопкополиэфирной ткани (а) и ткани покрытой H₃₂-F₁₉₇ (б, в).

Исследование поверхностных свойств тканевых покрытий

Гидрофобные и олеофобные свойства покрытий проанализированы с помощью измерения статических и динамических КУ смачивания водой (полярная жидкость) и ДИ (неполярная жидкость) (θ^{H_2O} и $\theta^{CH_2I_2}$) в зависимости от концентрации и состава ДС.

Из зависимостей КУ смачивания водой от концентрации двух ДС: H_{32} - F_{113} и H_{78} - F_{103} (Рис. 11) видно, что значения $\theta^{H_2 O}$ сначала увеличиваются, а затем, начиная с предельной концентрации ДС, не меняются. Эти предельные концентрации составляют 10 и 25 мг/мл для H_{32} - F_{113} и H_{78} - F_{103} , соответственно. В области более высоких концентраций КУ практически не изменяются, из чего можно заключить, что ДС полностью покрывает волокна ткани.

Химическая стойкость тканевых покрытий на основе H_{78} - F_{103} и H_{32} - F_{113} оценивалась на основании измерений $\theta^{H_2 0}$ после воздействия ТГФ и ДМФА. Как показано на Рис. 11 (кривые 3 и 6), значения $\theta^{H_2 0}$ немного (на 4 ± 2°) снизились, после обработки образцов ткани в ТГФ и в ДМФА в течение 24 часов.

Исследование устойчивости тканевых покрытий из H_{32} - F_{113} и H_{78} - F_{103} к стирке показало, что значения КУ по воде снижаются незначительно и составляют $\theta^{H_2 O} = 150 \pm 4 \circ u \ \theta^{H_2 O} = 121 \pm 3 \circ$, соответственно. (Рис. 11, кривые 2 и 5). Высокая устойчивость обусловлена локальным расположением ОН-групп в ПГЭМА-блоке, усиливающим связывание ДС с хлопкополиэфирной подложкой.

Рис. 11. Зависимость $\theta^{H_2 O}$ тканевых покрытий с нанесенными H_{32} - F_{113} (кривые 1-3) и H_{78} - F_{103} (кривые 4-6) от концентрации ДС до (сплошная линия: 1, 4) и после 5 циклов стирки (точечная линия: 2, 5), а также после воздействия на ткань ТГФ (пунктирная линия: 3, 6) и ДМФА (ромбы).

Все покрытия из ДС характеризуются заметно более высокими показателями КУ по воде и ДИ, в сравнении с соответствующими значениями для покрытий из ППФС. Показатель $\theta^{H_2 O}$ для ткани, обработанной ДС H₇₈-F₈₅ с соотношением длин ППФС и ПГЭМА блоков P_n^{ПФС}/P_n^{ГЭМА} = 1.1, составил 120 ± 6°, что выше, чем аналогичный показатель для ткани, пропитанной ППФС $\theta^{H_2 O}$ = 102 ± 2°. Кроме того, КУ смачивания ДИ для покрытия на основе H₇₈-F₈₅ $\theta^{CH_2 I_2}$ = 93 ± 2 ° также превышает величину, характерную для ткани покрытой ППФС $\theta^{CH_2 I_2} = 80 \pm 2$ °.

На Рис. 12 представлена зависимость КУ смачивания водой и ДИ для покрытий из ДС различного состава, приготовленных при концентрации 50 мг/мл. Видно, что увеличение $P_n^{\Pi\Phi C}/P_n^{\Gamma\Im MA}$ от 1.1 до 3.5 приводит к росту КУ от 120 ± 6° до 146 ± 3°. Дальнейшее увеличение соотношения от 3.5 до 6.2 приводит к повышению $\theta^{H_2 O}$ до 158 ± 4°, что свойственно супергидрофобным покрытиям. Более того, увеличение соотношения между длинами блоков приводит к увеличению КУ смачивания ДИ для этих образцов с $\theta^{CH_2I_2} = 93 \pm 2^\circ$ до 107 ± 3° и, тем самым, улучшает их олеофобные свойства.

Рис. 12. Зависимость $\theta^{H_2 O}$ (1) и $\theta^{CH_2 I_2}$ (2) хлопкополиэфирной ткани, покрытой ДС в присутствии ДЦ от соотношения $P_n^{\Pi \Phi C}/P_n^{\Gamma \Im MA}$. [ДС] = 50 мг/мл.

Таким образом, соотношение длины гидрофильного ПГЭМА-блока и гидрофобного ППФС-блока является основным фактором, определяющим переход гидрофобных покрытий в супергидрофобные. Увеличение соотношения $P_n^{\Pi\Phi C}/P_n^{\Gamma \Im MA}$ улучшает репеллентные свойства тканевых покрытий на их основе.

Динамика испарения капли на поверхности ткани, покрытой ДС

При создании супергидрофобных покрытий основной проблемой является стабилизация состояния Касси. С целью оценки устойчивости состояния Касси тканевых покрытий на основе ДС, было проведено исследование динамики испарения капли (Рис. 13). При увеличении соотношения $P_n^{\Pi\Phi C}/P_n^{\Gamma \Im MA}$ в ДС динамический КУ (θ_d) возрастает. Диаметр контакта уменьшается в течение не менее четверти периода испарения, в то время как КУ смачивания водой остается относительно высоким вследствие реализации состояния Касси.

На более поздних стадиях испарения состояние Касси нарушается и наблюдается переход в состояние Венцеля, когда вода заполняет пространство между волокнами.

Рис. 13. Усредненная динамика изменения КУ на хлопкополиэфирной ткани, покрытой H₃₈-F₁₂₀ без ДЦ (6) и с ДЦ (7), H₃₂-F₁₁₃ (8), H₃₂-F₁₂₈ (9) и H₃₂-F₁₉₇ (10) с ДЦ.

Образцы 8-10 демонстрируют более поздний переход, происходящий между 0.7÷0.8 относительного времени испарения, в то время как образцы 6-7 демонстрируют более ранний переход в состояние Венцеля при 0.4 времени испарения. Наблюдаемая стабилизация состояния Касси вероятно связана с более высоким содержанием фтора на поверхности образца 10 и, следовательно, более низкой свободной поверхностной энергией.

Таким образом, нанесение на хлопкополиэфирную ткань ДС с более высоким соотношением $P_n^{\Pi\Phi C}/P_n^{\Gamma\Im MA}$ приводит к росту величин КУ смачивания водой, а также к стабилизации состояния Касси во время испарения капель.

выводы:

1. Исследована полимеризация ПФС и ГЭМА в присутствии ЦПТБ в качестве ОПЦ-агента. Показано, что полимеризация обоих мономеров протекает по механизму ОПЦ-полимеризации. Установлено, в полимеризации ПФС низкомолекулярный ОПЦ-агент расходуется полностью на ранних стадиях (при q < 0.8 %) и является эффективным ОПЦ агентом с $C_{\Pi} = 77.4 \pm 2.2$.

2. Найдены условия получения узкодисперсных ДС по механизму ОПЦполимеризации, а именно: определены последовательность стадий синтеза и соотношения концентрации полимерного ОПЦ-агента и инициатора (4÷5 / 1). Синтезированы ДС с содержанием ППФС от 37 до 86 мол.%.

3. Установлено, что увеличение скорости полимеризации ПФС в присутствии полимерного ОПЦ-агента более чем в 1.5 раза по сравнению с ЦПТБ, обусловлено повышением локальной концентрации ПФС в зоне реакции вследствие ассоциативного поведения диблок-сополимерных макромолекул, формирующихся в реакционной смеси во время полимеризации.

4. Исследованы химический состав и морфология образцов исходной хлопкополиэфирной ткани, и ткани, обработанной ДС разного состава. Показано, что покрытия из ДС являются однородными и характеризуются наношероховатостью. Увеличение длины ППФС блока приводит к повышению содержания атомов F на поверхности покрытия. Максимальное содержание фтора [F] = 19.7 % наблюдается при нанесении на ткань H₃₂-F₁₉₇.

5. Исследование репеллентных свойств покрытий из ППФС и ДС разного состава показало, что основным фактором, определяющим превращение гидрофобных поверхностей в супергидрофобные и обеспечивающим стабилизацию состояния Касси, является соотношение длин ППФС и ПГЭМА блоков $P_n^{\Pi\Phi C}/P_n^{\Gamma \Im MA}$. Переход покрытий из гидрофобных в супергидрофобные происходит при $P_n^{\Pi\Phi C}/P_n^{\Gamma \Im MA} > 3.5$. Максимальные значения $\theta^{H_2 O} = 158 \pm 4 \circ и$ $\theta^{CH_2I_2} = 107 \pm 3 \circ$ получены на покрытии из ДС (H₃₂-F₁₉₇).

СПИСОК ПУБЛИКАЦИЙ ПО ТЕМЕ ДИССЕРТАЦИИ.

Статьи в журналах:

1. <u>Чекуров К.Е</u>., Барабанова А.И., Благодатских И.В., Локшин Б.В., Перегудов А.С., Абрамчук С.С., Хохлов А.Р. Синтез и самоассоциация амфифильных диблок-сополимеров 2,3,4,5,6-пентафторстирола. // ДАН. Химия. – 2019. - Т. 484. - № 4. - С. 431-435.

2. <u>Chekurov K.E.</u>, Barabanova A.I., Peregudov A.S., Khokhlov A.R. The investigation of the polymerization of 2,3,4,5,6-pentafluorostyrene in the presence of 2-cyano-2-propyl-dithiobenzoate by ¹H NMR-spectroscopy // Fluor. Notes. – 2019. - V. 124. - P. 1-2.

3. <u>Чекуров К.Е</u>., Барабанова А.И., Благодатских И.В., Муранов А.В., Лаптинская Т.В., Перегудов А.С., Хохлов А.Р. Исследование полимеризации 2,3,4,5,6-пентафторстирола в присутствии поли-2-гидроксиэтилметакрилатного агента передачи цепи // Докл. Химия, науки о материалах. – 2020. - Т. 490. - № 1. - С. 24-28.

<u>Chekurov K.E.</u>, Barabanova A.I., Blagodatskikh I.V., Lokshin B.V., Kondratenko M.S., Gallyamov M.O., Peregudov A.S., Khokhlov A.R. Synthesis and Surface Properties of Amphiphilic Fluorine-containing Diblock Copolymers // J.Appl.Polym.Sci. – 2021. -V. 138. – P. 49714.

5. <u>Chekurov K.E.</u>, Barabanova A.I., Blagodatskikh I.V., Khokhlov A.R. Surface properties of thin films of poly(2,3,4,5,6-pentafluorostyrene) and diblock copolymers based on 2,3,4,5,6-pentafluorostyrene and 2-hydroxyethyl methacrylate // Fluor. Notes. - 2020. - V. 133. - P. 5-6.

Тезисы докладов:

1. <u>Chekurov K.E.</u>, Barabanova A.I., Khokhlov A.R. Synthesis and study of the repellent properties of fluorine-containing diblock copolymers. Abstracts of 4th International Conference on Bioinspired and Biobased Chemistry & Materials. Nice, France, October 14-17. – 2018. - P. 315.

2. <u>Чекуров К.Е</u>., Барабанова А.И., Хохлов А.Р. Синтез и исследование репеллентных свойств амфифильных диблок-сополимеров 2,3,4,5,6,пентафторстирола и 2-гидроксиэтилметакрилата. Международная научная конференция студентов, аспирантов и молодых ученых "Ломоносов-2019", Москва, Россия, Апрель 9-12. - 2019. - С. 227.

3. <u>Chekurov K.E.</u>, Barabanova A.I., Khokhlov A.R. Preparation of superhydrophobic coatings based on amphiphilic diblock-copolymers 2,3,4,5,6-pentafluorostyrene and 2-hydroxiethylmethacrylate. Abstracts of XXI Mendeleev congress of general and applied chemistry, Saint Petersburg, Russia, September 9-13. - 2019. - V. 2b. - P. 78.