ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ ИНСТИТУТ ЭЛЕМЕНТООРГАНИЧЕСКИХ СОЕДИНЕНИЙ им. А. Н. НЕСМЕЯНОВА РОССИЙСКОЙ АКАДЕМИИ НАУК

На правах рукописи

APCEHOB

Михаил Анатольевич

КАТАЛИТИЧЕСКИЕ ПОДХОДЫ К СИНТЕЗУ ОРГАНИЧЕСКИХ ЛЮМИНОФОРОВ НА ОСНОВЕ ИЗОКУМАРИНОВ

1.4.8. – Химия элементоорганических соединений

АВТОРЕФЕРАТ

Диссертации на соискание ученой степени кандидата химических наук Работа выполнена в лаборатории π-комплексов переходных металлов №102 и лаборатории стереонаправленного синтеза биоактивных соединений №136 Федерального государственного бюджетного учреждения науки Институт элементоорганических соединений им. А.Н. Несмеянова Российской академии наук (ИНЭОС РАН).

Научный руководитель: Логинов Дмитрий Александрович,

доктор химических наук, ведущий научный сотрудник лаборатории π-комплексов переходных металлов (№102) Федерального государственного бюджетного учреждения науки Институт элементоорганических соединений им. А.Н. Несмеянова Российской академии наук

Официальные оппоненты:

Третьяков Евгений Викторович,

член-корреспондент РАН, доктор химических наук, заведующий лабораторией гетероциклических соединений им. академика А.Е. Чичибабина Федерального государственного бюджетного учреждения науки Институт органической химии им. Н. Д. Зелинского Российской академии наук

Борщев Олег Валентинович,

доктор химических наук, заведующий лабораторией функциональных материалов для органической электроники и фотоники Федерального государственного бюджетного учреждения науки Институт синтетических полимерных материалов им. Н.С. Ениколопова Российской академии наук

Ведущая организация: Федеральное государственное бюджетное учреждение науки Федеральный исследовательский центр «Иркутский институт химии им. А.Е. Фаворского Сибирского отделения Российской академии наук».

Защита диссертации состоится «02» декабря 2025 г в 11 часов на заседании диссертационного совета 24.1.161.01 по присуждению ученой степени кандидата химических наук при Федеральном государственном бюджетном учреждении науки Институт элементоорганических соединений им. А.Н.Несмеянова РАН по адресу: 119334, Москва, ул. Вавилова, д. 28, стр. 1.

С диссертацией можно ознакомиться в библиотеке и на сайте Федерального государственного бюджетного учреждения науки Институт элементоорганических соединений им. А.Н.Несмеянова РАН, адрес сайта https://ineos.ac.ru/.

Автореферат разослан «	>>	2025 г.
------------------------	-----------------	---------

Ученый секретарь диссертационного совета 24.1.161.01 кандидат химических наук

Ольшевская В.А.

Актуальность работы

В течение последних десятилетий органические люминофоры находят широкое применение в различных областях науки и человеческой деятельности, начиная от красителей и флуоресцентных маркеров и заканчивая фотоникой и оптоэлектроникой. Стремительное развитие технологий, связанных с электролюминесцентными материалами, делает актуальным поиск соединений с заданными свойствами, что, в свою очередь, подталкивает исследователей к развитию молекулярного дизайна и поиску новых методов органического синтеза.

Одним из наиболее распространенных классов органических люминофоров являются производные кумарина, однако фотофизические свойства его изомерного аналога – изокумарина до сих пор остаются малоизученными, несмотря на их большое структурное сходство. В первую очередь это связано с большей синтетической доступностью кумаринов, методы получения которых широко изучены ещё в XX веке. В то же время значительный прогресс в синтезе изокумаринов был достигнут в начале текущего столетия с открытием реакции окислительного сочетания ароматических кислот с интернальными алкинами, проходящую через прямую активацию С-Н связи в *орто*- положении. Реакции С-Н активации/аннелирования являются высокоэффективным и атом-экономичным подходом к синтезу широкого круга гетероциклических органических соединений исходя из относительно доступных субстратов, а наиболее распространёнными катализаторами данных процессов являются комплексы родия (ПП) с различными циклопентадиенильными лигандами.

Таким образом, получение новых фундаментальных знаний о методах синтеза и фотофизических свойствах изокумаринов, а также создание на их основе новых люминесцентных материалов является актуальной задачей в настоящее время.

Степень разработанности темы исследования

В отличие от родственного класса органических соединений – кумаринов, широко использующихся в качестве молекулярных сенсоров, различных флуоресцентных маркеров для биоактивных соединений в биологической среде, а также фотоактивных соединений, применимых для различных направлений фотоники и оптоэлектроники, включая ОLED-устройства, работа которых основана на TADF-эффекте, применение изокумаринов главным образом ограничено фармацевтическими и сельскохозяйственными направлениями. Кроме того, к моменту начала работы над данным диссертационным исследованием в литературе присутствовали лишь единичные разрозненные публикации, посвященные фотофизическим свойствам изокумаринов. Тем не менее, следует отметить, что среди этих работ присутствовали примеры успешного применения изокумаринов для получения фотоактивных материалов, в том числе в наиболее актуальных и прорывных направлениях. Кроме того, на момент начала работы

над данным диссертационным исследованием поиск эффективных и относительно простых синтетических подходов к получению люминофоров на основе изокумаринов из легкодоступных исходных соединений находился на стадии активного развития.

Целью работы является разработка доступных подходов к синтезу органических люминофоров на основе производных изокумарина, обладающих перспективными фотофизическими свойствами.

Для достижения этой цели были поставлены следующие задачи:

- 1) Изучение влияния природы поддерживающего лиганда в структуре родиевого катализатора, а также условий реакции и природы субстратов на селективность и эффективность реакции С-Н активации/аннелирования различных арилкарбоновых кислот с алкинами как наиболее эффективного метода синтеза изокумаринов.
- 2) Установление взаимосвязи между строением изокумаринов и их фотофизическими свойствами.
- 3) Поиск эффективных путей модификации изокумаринов с целью улучшения их фотофизических свойств.

Научная новизна работы

- 1) Установлена взаимосвязь различных факторов (структура катализатора, природа растворителя, окислителя и субстратов, а также условия реакции) с селективностью и эффективностью реакции С-Н активации/аннелирования арилкарбоновых кислот с алкинами.
- 2) Разработаны эффективные подходы к синтезу несимметричных пираноноизокумаринов и окта-замещенных антраценов из доступной терефталевой кислоты.
- 3) Впервые получены изокумарин-замещенные изохинолиниевые соли, как потенциальные донорно-акцепторные системы для последующего использования в создании TADF-эмиттеров, в которых изокумарин выступает в качестве донорного фрагмента.
- 4) Для изокумаринов впервые установлена взаимосвязь между геометрией синглетного возбужденного состояния (полученной с помощью DFT-расчетов) и эффективностью люминесценции.

Теоретическая значимость заключается в определении взаимосвязи строения производных изокумарина с их фотофизическими свойствами. Было показано, что квантовохимические расчеты позволяют предсказывать безызлучательные потери энергии в изокумаринах. На основе этих закономерностей были предсказаны и показаны возможные эффективные пути модификации изокумаринов с целью улучшения их фотофизических свойств.

Практическая значимость заключается в том, что на основе доступных исходных соединений были разработаны эффективные синтетические подходы к получению различных

классов фотоактивных органических соединений, в том числе изокумаринов, замещенных нафталинов, несимметричных пираноноизокумаринов и окта-замещенных антраценов, а также изокумарин-замещенных изохинолиниевых катионов, которые обладают высокими квантовыми выходами люминесценции и проявляют эффект агрегационно-индуцируемой эмиссии (AIE), что делает их перспективными объектами для последующего применения в органической фотонике и оптоэлектронике.

Методология и методы диссертационного исследования

Методология основана на анализе литературных данных об использовании изокумаринов в качестве люминофоров, а также имеющихся в литературе способах создания изокумаринового каркаса. В качестве основного синтетического подхода использовалась Rh (III) – катализируемая реакция С-Н активации/аннелирования. Кроме того, в данной работе использовались такие методологические подходы к синтезу органических прекурсоров, а также пост-синтетической модификации полученных соединений, как щелочной гидролиз и реакция этерификации, кислотно-промотируемая внутримолекулярная циклизация, Pd катализируемые реакции кросс-сочетания Сузуки и Бухвальда-Хартвига, а также реакция Соногаширы. Для подтверждения строения полученных соединений, а также изучения их свойств использовались различные методы: ЯМР на ядрах ¹H, ¹³C, ¹⁹F, масс-спектрометрия электронного (MS-EI), масс-спектрометрия высокого разрешения удара рентгеноструктурный анализ, ИК-спектроскопия, УФ-спектроскопия и элементный анализ.

Основные положения, выносимые на защиту:

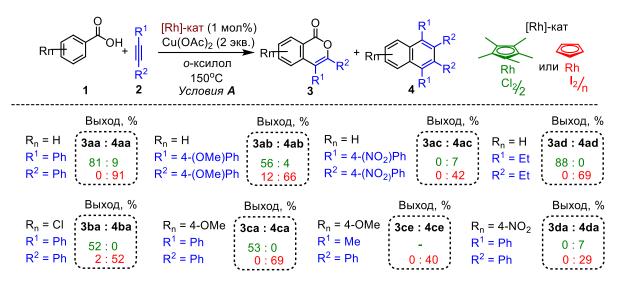
- 1) Оптимизация условий реакции С-Н активации ароматических кислот с интернальными алкинами для электронодефицитных субстратов.
- 2) Определение причин безызлучательных потерь энергии при релаксации для изокумаринов с низкими квантовыми выходами и преодоление данных недостатков путем химической модификации таких соединений.
- 3) Синтез органических люминофоров на основе изокумарина в качестве акцепторного или донорного фрагмента молекул типа Д-А.

Личный вклад автора состоит в постановке задачи, проведении синтетической и расчетной частей работы, изучении фотофизических свойств полученных соединений, а также в анализе и подготовке к публикации полученных результатов.

Достоверность полученных результатов обеспечивалась за счет использования сертифицированного научного оборудования и применения комплекса различных физико-химических методов анализа для установления строения и изучения свойств полученных соединений. Результаты экспериментов воспроизводимы, согласуются между собой и следуют общей логике работы.

Апробация работы. По материалам диссертации опубликовано 8 статей в международных и российских научных изданиях, рекомендованных ВАК (5 статей в журналах, индексируемых в международных базах Scopus и Web of Science, 3 статьи — в журналах, включенных в РИНЦ) и 8 тезисов докладов. Результаты работы были представлены на всероссийских (с международным участием) и международных конференциях «7th Razuvaev Lectures» (Нижний Новгород, 2019), «INEOS-65» (Москва, 2019), «12th International Conference on Chemistry for Young Scientists» (Санкт-Петербург, 2021), «XXVI Всероссийская Конференция Молодых Учёных-Химиков (с международным участием)» (Нижний Новгород, 2023), «New Emerging Trends in Chemistry» (Ереван, 2023), 4th International symposium "Modern trends in organometallic chemistry and catalysis" (Москва, 2023), «30th International conference on Organometallic Chemistry» (Агра, 2024), «INEOS-70» (Москва, 2024).

Объем и структура работы. Диссертация изложена на 220 страницах. Работа состоит из введения, литературного обзора, обсуждения результатов, экспериментальной части и заключения, содержит 99 схем, 42 рисунка и 16 таблиц. Список литературы содержит 217 наименований.


Основное содержание диссертационной работы.

Введение к диссертации описывает актуальность темы данного научного исследования, в нем обозначены цели и задачи диссертационной работы, а также ее новизна, теоретическая и практическая значимости. Литературный обзор посвящён органическим люминофорам на основе изокумаринов и охватывает всю известную в литературе до марта 2025 г. информацию об их фотофизических свойствах и применении в качестве фотоактивных материалов и сенсоров, а также все основные синтетические подходы к созданию изокумаринового каркаса. Обсуждение результатов состоит из шести разделов. Экспериментальная часть включает общие положения, касающиеся использованных экспериментальных подходов, методики проведения описанных в данной работе экспериментов, а также характеризацию полученных соединений при помощи физико-химических методов анализа.

1. Влияние природы циклопентадиенильного лиганда в комплексах [Cp*RhCl2]2 и [CpRhI2]n на селективность реакции С-Н активации/аннелирования ароматических кислот с алкинами

На первой стадии диссертационного исследования было проведено сравнительное исследование каталитической активности двух комплексов родия (III) с различными по своей природе циклопентадиенильными лигандами (Cp* и Cp) на широком круге ароматических кислот с использованием стандартных литературных условий (кипячение при 150°C в *о*-ксилоле в присутствии ацетата меди (II) Cu(OAc)₂ в качестве окислителя – *Условия A*) (Схема 1).

.

Схема 1. Реакция окислительного сочетания производных бензойной кислоты **1a-d** с алкинами **2a-e** в присутствии [Cp*RhCl₂]₂ или [CpRhI₂]_n в *Условиях А*

Оказалось, что в случае бензойной кислоты, а также ее производных с различными заместителями в ароматическом кольце хемоселективность реакции сильно зависит от природы циклопентадиенильного лиганда в составе катализатора. Родиевый комплекс с незамещенным Ср приводит к преимущественному образованию нафталиновых производных, в то время как комплекс с более донорным Ср* лигандом способствует получению производных изокумарина. При этом важно отметить, что при наличии в исходных субстратах таких акцепторных заместителей, как NO₂-группа эффективность реакции значительно падает. К примеру, в реакции 1d с 2a при использовании [CpRhI₂]_п выход нафталина 4da составил 29%, а аналогичная реакция с [Cp*RhCl₂]₂ и вовсе не приводит к образованию изокумарина 3da.

2. Оптимизация условий реакции для электронодефицитных субстратов

На следующем этапе работы было изучено влияние условий реакции на селективность и эффективность каталитических процессов с субстратами, дающими низкие выходы изокумаринов в стандартных Условиях A.

Оказалось, что простая замена o-ксилола на полярный апротонный растворитель — ДМФА может приводить к повышению селективности образования изокумаринов. Так, если в $\mathit{Условиях}\ A\ 1i$ и 2a реагируют с образованием смеси 3ia и 4ia с выходами 27% и 12% соответственно, то использование $\mathit{Условий}\ B\ (ДМФА$ вместо o-ксилола) позволило селективно получить изокумарин 3ia в качестве единственного продукта реакции с выходом 74% (Схема 2).

Помимо этого, использование *Условий* B вместо *Условий* A позволило значительно увеличить селективность и эффективность процесса образования изокумарина **3ha** из **1h** и **2a** в присутствии [Cp*RhCl₂]₂ (выход **3ha** составил 72%) (Схема 3). В то же время использование более донорного диалкилацетилена **2f** и вовсе приводит к образованию изокумарина **3hf** в качестве единственного продукта реакции с выходом 86%. Кроме того, переход к *Условиям* B

позволяет увеличить выход продукта присоединения двух молекул алкина **4ha** до 88% в присутствии [CpRhI₂]_n

Схема 2. Влияние природы растворителя на реакцию С-Н активации/аннелирования 1i с 2a в присутствии [Cp*RhCl₂]₂ и Cu(OAc)₂

Схема 3. Реакция С-H активации/аннелирования 1h с 2a и 2f в присутствии [Cp*RhCl₂]₂ или [CpRhI₂]_n в зависимости от условий проведения

Схема 4. Реакция С-Н активации/аннелирования **1d** с **2a** в присутствии [Cp*RhCl₂]₂ в зависимости от условий проведения

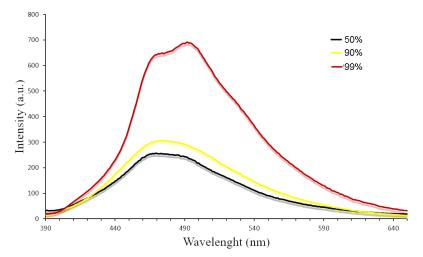
Тем не менее, для субстратов с такими сильными электроноакцепторными группами как, к примеру, -NO₂. простой замены растворителя оказывается уже недостаточно. В *Условиях В* происходит изменение хемоселективности процесса в сторону преимущественного образования изокумарина **3da** с выходом 24%, однако общая конверсия в реакции остается достаточно низкой (Схема 4). При этом заметного улучшения удается добиться за счет использования карбоната серебра (I) в качестве окислителя вместо ацетата меди (II) (*Условия С*). Увеличение селективности и эффективности реакции можно объяснить более высоким окислительным

потенциалом Ag₂CO₃, что благоприятствует протеканию стадии восстановительного элиминирования и дальнейшего реокисления катализатора.

Аналогичное положительное влияние использования в качестве окислителя соли серебра можно отметить и для 4-трифторметилбензойной (11), 4-цианобензойной (1n) и 4-(этоксикарбонил)бензойной (1o) кислот (Схема 5).

Схема 5. Сравнение выходов производных изокумарина в случае кислот с акцепторными заместителями **11, 1n** или **10** при переходе от *Условий A* к *Условиям C*

Было обнаружено, что в реакции терефталевой кислоты **1p** с **2a** в присутствии [Cp*RhCl₂]₂ замена растворителя на ДМФА (*Условия В*) приводит к появлению незначительного количества продукта внедрения двух молекул толана – пираноноизокумарина **3pa** (выход **3pa** – 8%, выход **4pa** – 25%) (Схема 6). Использование *Условий С* позволяет достичь высокой конверсии с образованием смеси **3pa** и **4pa** в соотношении 1 к 2 с общим выходом 96%. В то же время в результате аналогичной реакции с более донорным алкином **1e** основным продуктом реакции является уже пираноноизокумарин **3pe** (выход 91%), а **4pe** образуется лишь в малых количествах (6%).


Схема 6. Реакция С-Н активации/аннелирования терефталевой кислоты **1p** с алкинами **2a** и **2e** в присутствии [Cp*RhCl₂]₂ в зависимости от условий проведения

3. Фотофизические свойства изокумаринов и других полиароматических соединений

Для большинства полученных соединений были записаны спектры поглощения и испускания в УФ и видимой области. Оказалось, что большинство изокумаринов демонстрирует крайне низкие квантовые выходы люминесценции в растворе. В то же время изокумарин **30a** со сложноэфирной группой в 6-ом положении, полиароматические

изокумарины (**3ha** и **4pa**), а также пираноноизокумарины (**3pa** и **3pe**) проявляют более интенсивную люминесценцию (квантовые выходы – 6-16%).

Кроме того, для изокумарина **30a** было зафиксировано разгорание флуоресценции в смесях $T\Gamma\Phi/H_2O$. Данная система в классическом варианте используется для обнаружения эффекта агрегационно-индуцированной эмиссии (AIE). Так, при увеличении содержания воды (f_w) с 90 до 99 об.% в спектре флуоресценции **30a** наблюдалось увеличение эмиссии в 2.5 раза, что может быть связано с образованием димеров или более протяженных агрегатов (Рисунок 1).

Рисунок 1. Спектр испускания (C = $2 \cdot 10^{-5}$ M, $\lambda_{\rm ex} = 357$ нм) изокумарина **30а** в смесях ТГФ/H₂O с различным содержанием воды (f_w)

Тетрафенилнафталин **4aa**, а также его производные с донорными заместителями демонстрируют слабую люминесценцию с квантовыми выходами 13-24%. В то же время тетрафенилнафталины **4la**, **4na** и **4oa**, содержащие в себе акцепторную группу (CF₃, CN и СООЕt соответственно) проявляют более сильную люминесценцию ($\varphi_F = 28-55\%$). Наивысший квантовый выход был зафиксирован для полиароматического производного **4ha** (63%).

Однако увеличение содержания воды f_w с 90 до 99 об.% в смесях ТНГ/ H_2O для нафталина со сложноэфирной группой **40а** приводит к значительному тушению флуоресценции (в 3.5 раза), что может быть вызвано образованием димеров с межмолекулярной π - π укладкой между нафталиновыми фрагментами.

4. Последовательные реакции С-Н активации терефталевой кислоты в синтезе несимметричных антраценов и пираноноизокумаринов

Как уже было упомянуто выше реакция С-Н активации терефталевой кислоты 1p с 2a в зависимости от природы алкина приводит к преимущественному образованию продуктов двух типов: изокумарина 4pa и пираноноизокумарина 3pe. В то же время стоит отметить, что попытка использования $[CpRhI_2]_n$ в качестве катализатора не приводит к образованию антрацена в результате внедрения четырех молекул ацетилена.

Еще одним ограничением данной реакции является возможность получения только симметричных производных пираноноизокумаринов, поскольку одновременное присутствие в реакции двух различных по своей природе алкинов приводит к образованию смеси продуктов.

В связи с этим в рамках данной диссертационной работы был предложен подход, основанный на предварительной защите одной из карбоксильных групп терефталевой кислоты, внедрении первого алкина, дальнейшем удалении защитной группы и дополнительном аннелировании второго алкина.

Схема 7. $[CpRhI_2]_n$ – катализируемая реакция С-Н активации 10 или 10-Ме с алкинами

Схема 8. [Cp*RhCl₂]₂ — катализируемая реакция C-H активации 10 или 10-Me с алкилзамещенными ацетиленами 2d-2e, 2g-2j. ^а Средний выход для двух реакций с 10 и 10-Me. ^b Реакция в присутствии 2 мол% [Cp*RhCl₂]₂

Было обнаружено, что в присутствии [CpRhI₂]_n на первой каталитической стадии использование 2a, а также диалкилацетиленов 2e-2f позволяет получать соответствующие нафталины 4oa, 4oe-4of, в то время как введение в реакцию алкина 2h с двумя донорными метоксиметильными группами (MOM), а также алкинов 2i и 2j с донорной и сильно объёмной *трет*-бутильной группой приводит к инверсии хемоселективности с образованием соответствующих изокумаринов 3oh-3oj в качестве единственных продуктов (Схема 7).

При использовании [Cp*RhCl₂]₂ в качестве катализатора и оптимизированных ранее Условий C в данной реакции удается селективно синтезировать изокумарины (Схема 8).

$$R = Ph, Ph/Me, Pr$$

CPRhl₂ (1 мол%)
 $R = Ph, Ph/Me, Pr$

Sak Ph

Me Seg

Схема 9. Реакция С-Н активации/аннелирования кислот **5a**, **5e** и **5f** с образованием несимметричных окта-замещенных антраценов **8**

Повторная реакция С-Н активации/аннелирования полученных после снятия эфирной защитной группы нафтойных кислот **5a**, **5e** и **5f** с различными алкинами в присутствии [CpRhI₂]_п приводит к образованию ожидаемых несимметричных окта-замещенных антраценов **8** (Схема 9). При этом введение в данную реакцию алкинов с объемной [†]Ви группой приводит к селективному образованию изокумаринов **9**. В то же время повторная реакция С-Н активации/аннелирования полученных после снятия эфирной защитной группы

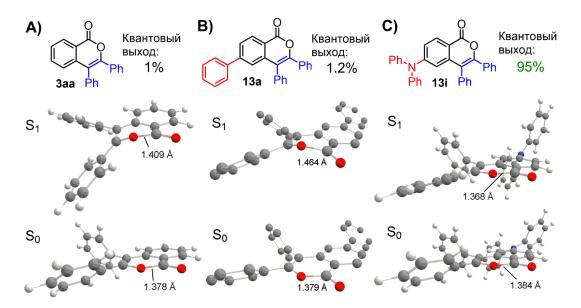
изокумаринкарбоновых кислот **7a**, **7d** и **7j** в присутствии $[Cp*RhCl_2]_2$ позволяет получить несимметричные пираноноизокумарины **11** (Схема 10).

Схема 10. Реакция С-Н активации/аннелирования кислот **7a**, **7d** и **7j** с получением несимметричных пираноноизокумаринов **11**

5. Пост-синтетическая модификация изокумаринов

На начальных этапах работы было показано, что **Заа**, а также его производные с сильными электроноакцепторными заместителями в положении 6 обладают слабой люминесценцией в растворах ($\phi_F < 15\%$). Хотя некоторые из них и проявляют АІЕ-эффект при агрегации, квантовые выходы люминесценции остаются низкими.

Из литературы известно, что для кумаринов введение донорной группы в положение 7 приводит к многократному возрастанию квантового выхода люминесценции за счет активации внутримолекулярного переноса заряда (ІСТ) в результате сопряжения (Рисунок 2). Это позволяет предположить, что введение донорных заместителей в положение 6 изокумаринового каркаса должно приводить к аналогичному разгоранию флуоресценции.

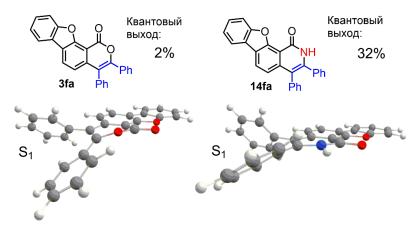

Рисунок 2. Влияние заместителей в определенных позициях кумаринового (слева) и изокумаринового (справа) каркасов на люминесцентные свойства

В соответствии с выдвинутым предположением, на следующем этапе работы был осуществлен синтез изокумаринов с донорными заместителями в положении 6 путем модификации бромо-замещенного производного **3ua** при помощи Pd (0) — катализируемых реакций кросс-сочетания Сузуки (Схема 11), Бухвальда-Хартивига и реакции Соногаширы (Схема 12).

Схема 11. Получение изокумаринов 13а-f по реакции Сузуки

Схема 12. Получение изокумаринов **13g** и **13h** по реакции Соногаширы, а также изокумарина **13i** по реакции Бухвальда-Хартивига

Оказалось, что большинство производных демонстрируют квантовые выходы ниже 2%, за исключением **13d** ($\phi_F = 9.8\%$), **13h** ($\phi_F = 4.8\%$) и **13i** ($\phi_F = 95.1\%$). С целью объяснения низкой эффективности люминесценции большинства арилзамещенных изокумаринов, проанализирована разница в геометрии основного состояния S_0 и первого синглетного возбужденного состояния S₁, отвечающих за основной излучательный переход при помощи DFT-расчетов (B3LYP/6-31G(d)). Было обнаружено, что изокумарины 13d, 13h и 13i в возбужденном состоянии S_1 , как и в S_0 , имеют плоскую структуру. В то же время для соединения 13a в состоянии S₁ наблюдается сильное отклонение атома кислорода сложноэфирной группы от циклической плоскости, а также удлинение связи C-O на 0.085 Å (Рисунок 3). Аналогичное отклонение геометрии от плоской наблюдается и для соединений 13е-д. Эта картина схожа с незамещенным дифенилизокумарином Заа и может указывать на возникновение обратимого фотохимического раскрытия лактонного цикла с образованием соответствующих производных кетена. При этом наличие донорной -NPh2 группы в случае 13i стабилизирует плоскую геометрию первого возбуждённого состояния. Можно предположить, что именно данный процесс может являться одной из основных причин безызлучательной релаксации для изокумаринов.


Рисунок 3. Сравнение геометрии состояний S_1 и S_0 для изокумаринов **3aa** (A), **13a** (B) и **13i** (C)

Другим подходом к пост-синтетической модификации изокумаринов со слабой люминесценцией, предложенным в рамках данной работы, стал их перевод в соответствующие изохинолоны, являющиеся близкими гетероциклическими аналогами изокумаринов. Для проведения сравнения фотофизических свойств была получена небольшая серия изокумаринов 3аа, 3са, 3fa, 3va, 3wa и 3ed и соответствующих им изохинолонов 14аа, 14са, 14fa, 14va, 14wa и 14ed при помощи обработки первых формиатом аммония в ДМСО (Схема 13).

Схема 13. Двухстадийный синтез изохинолонов 14 из ароматических кислот и алкинов

Обнаружено, что практически во всех случаях изохинолоны обладают более сильной люминесценцией, чем соответствующие изокумарины. Наибольшее разгорание люминесценции было детектировано для пары соединений $\bf 3fa-14fa$ (увеличение ϕ_F от 2 до 32%). При этом геометрия $\bf S_1$ возбуждённого состояния для $\bf 14fa$ остается планарной, в отличие от $\bf 3fa$, претерпевающего искажение, аналогичное описанному выше (Рисунок 4). Таким образом оба

пути пост-синтетической модификации изокумарннов приводят к увеличению эффективности люминесценции только в тех случаях, когда происходит стабилизация геометрии молекулы в возбужденном состоянии.

Рисунок 4. Сравнение геометрии возбужденных состояний S₁ для изокумарина **3fa** и изохинолона **14fa**

6. Изокумарины в качестве донорного блока соединений типа донор-акцептор (Д-А)

Если для соединения **13i**, изокумарин выступал в качестве акцепторного фрагмента, то на заключительном этапе была поставлена задача попытаться использовать изокумарин в качестве донорного блока при создании скрученных Д-А систем. Последние интересны тем, что в скрученных молекулах удается минимизировать степень перекрывания между ВЗМО и НСМО и, тем самым, снизить разницу в энергиях между первыми синглетным (S_1) и триплетным (T_1) возбужденными состояниями (ΔE_{ST}) до значений менее 0.1 эВ, что является одним из ключевых требований при создании TADF-эмиттеров. В качестве акцепторного фрагмента было предложено использовать катионы изохинолиния, синтез которых также доступен в одну стадию из относительно доступных реагентов при помощи Rh-катализируемой реакции C-H активации.

Для получения таких изокумарин-замещенных изохинолиниевых солей был разработан одностадийный подход, основанный на каскадной реакции С-Н активации/аннелирования бензальдегидов и аминобензойных кислот с алкинами. Было показано, что при кипячении в метаноле в присутствии окислителя Cu(OAc)₂ и соли серебра AgBF₄ удается вводить в данную реакцию различные бензальдегиды с донорными заместителями с селективным образованием продуктов 16 (Схема 14). В случае несимметричных алкинов образование изокумаринового фрагмента происходит региоселективно, в то время как изохинолиновая часть образуется в виде двух региоизомеров (для 16cxe rr 3:1). В случае несимметричного бензальдегида 15c реакция протекает региоселективно с образованием только изомера, образующегося в результате С-Н активации наиболее стерически доступного *орто*-положения. Помимо *п*-аминобензойной кислоты 1x, аналогичным образом в реакцию вступают *м*-аминобензойная 1y и 4'-амино-[1,1'-

бифенил]-4-карбоксилиловая кислоты **1z**, приводя к целевым продуктам с выходом 73 и 94%, соответственно. В то же время *о*-аминобензойная к-та **1x'** не вступает в данную реакцию, что по-видимому связанно с ее способностью выступать в качестве хелатирующего лиганда, деактивирующего родиевый катализатор.

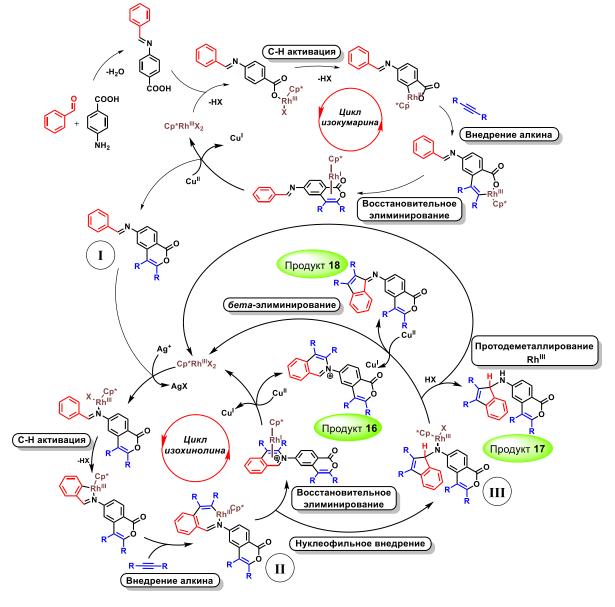
1.
$$[Cp^*RRCI_2]_2$$
 (2.5 mon%) $Cu(OAc)_2$ (3 sks.), $AgBF_4$ (20 mon%), $MeOH$, $80^\circ C$, 8^\vee R^2 R^2

Схема 14. Синтез изокумарин-замещенных изохинолиниевых солей **16** из бензальдегидов с сильными донорными заместителями. ^а Соотношение 3-Ph/4-Ph региоизомеров в изохинолиновом фрагменте составляет 3:1. Изокумариновый фрагмент в обоих выделенных региоизомерах **16схе** и **16схе** имеет только конфигурацию 3-Ph

Схема 15. Синтез изокумарин-замещенных индениминов **17** из бензальдегидов с сильными акцепторными заместителями

Неожиданно оказалось, что в случае бензальдегидов, содержащих сильные электроноакцепторные группы -NO₂ или -CN, в результате реакции в тех же условиях вместо ожидаемых катионных продуктов **16** селективно образуются изокумарин-замещенные инденонимины **17** (Схема 15).

Таблица 1. Реакция с участием бензальдегидов со слабыми акцепторными/донорными заместителями


№	Бензальдегид 15	Кислота	Выход 16	Выход 17	Выход 18
1	15i:	1x	45%, 16ixd	-	39%, 18ixd
2	15j:	1x	52%, 16jxd	-	39%, 18jxd
3	15k: iPr	1x	65%, 16kxd	-	31%, 18kxd
4	15l: MeO	1x	62%, 16lxd	-	13%, 18lxd
5	15m:	1x	49%, 16mxd	-	26%, 18mxd
6	15m:	1z	82%, 16mzd	12%, 17mzd	-
7	15n: Br	1x	18%, 16nxd	-	71%, 18nxd
8 ^a	15n: Br	1x	-	56%, 17nxd	-
9	150: Br	1x	10%, 16ixd	-	65%, 18oxd
10	15p: F ₃ C	1x	10%, 16pxd	11%, 17pxd	62%, 18pxd
11	15q: MeOOC	1x	19%, 16qxd	59%, 17qxd	
12	15q: MeOOC	1z	26%, 16qzd	54%, 17qzd	-

^а Реакция в ДМФА с предварительно полученным из альдегида **15n** и аминокислоты **1x** основанием Шиффа

В случае незамещенного бензальдегида **15i**, а также бензальдегидов со слабыми электронодонорными или электроноакцепторными заместителями реакция продемонстрировала низкую селективность (Таблица 1). В результате реакций с бензальдегидами, содержащими алкил- или алкокси- группы, образуются смеси изохинолиниевых солей **16** и индениламинов **18**. При этом по мере увеличения донорной способности заместителя увеличивается выход катионного продукта **16** (Таблица 1, строки 1-5). В то же время отдаление от реакционного центра акцепторной карбоксильной группы в аминобензойной кислоте за счет добавления фениленового мостика (использование **1z** вместо **1x**) в реакции с участием пипероналя **15m**

приводит к значительному смещению хемоселективности реакции в сторону преимущественного образования изохинолиниевого катиона **16mzd** (Таблица 1, строки 5-6).

Наличие в структуре бензальдегида слабых электроноакцепторных заместителей, таких как галоген- (для 15n и 15o) или трифторметильная группы (для 15p), сдвигает селективность реакции в сторону преимущественного образования индениламинов 18 (Таблица 1, строки 7-10). Стоит при этом отметить, что замена метанола на полярный апротонный растворитель ДМФА в реакции с 15n способствует тому, что единственным продуктом реакции оказывается инденилимин 17nxd (Таблица 1, строки 7-8). Реакция метил 4-формилбензоата 15q приводит к смеси катионной соли 16 и инденилимина 17 с преимущественным образованием последнего (Таблица 1, строки 11-12), что близко к тому, что наблюдалось ранее для 15e-h с сильными акцепторными заместителями.

Схема 16. Предполагаемый механизм Rh(III)-катализируемой каскадной реакции С-Н активации/аннелирования бензальдегидов и аминобензойных кислот алкинами

Согласно предполагаемому механизму реакции (Схема 16) на первой стадии образующееся *in situ* из бензальдегида и аминобензойной кислоты основание Шиффа вступает в «изокумариновый» Rh-катализируемый цикл по классической схеме с образованием промежуточного изокумарина, содержащего иминовый фрагмент (I). После чего этот изокумарин вступает в «изохинолиновый» цикл с образованием промежуточного комплекса II. Далее возможны два варианта направления реакции. Одним из вариантов является восстановительное элиминирование с образованием катионного продукта 16. Другой возможный путь реакции проходит через нуклеофильное внедрение по атому углерода рядом с азотом с образованием комплекса III, который может либо подвергаться *бета-*элиминированию с образованием продукта 17, либо протодеметаллированию с образованием продукта 18.

Для всех полученных изокумарин-замещенных изохинолиниевых солей **16** были записаны УФ спектры поглощения и испускания, а также измерены квантовые выходы люминесценции в растворе. Оказалось, что катионы изохинолиния с донорными заместителями демонстрируют высокую эффективность испускания в сине-зеленой области (φ_F (**16mxd**) = 99%). Согласно DFT и TD-DFT расчетам (B3LYP/6-31G(d)), первое синглетное возбужденное состояние (S₁) в **16mxd** имеет π – π * природу (LE) и в переходах участвуют только ВЗМО и НСМО, локализованные на изохинолиниевом фрагменте. При этом разница в энергиях первого синглетного и триплетного возбужденных состояний (ΔE_{ST}) имеет характерное для LE значение 0.94 эВ (TDA-B3LYP/6-31G(d)).

В то же время, в случае катиона **16qxd**, содержащего акцепторную сложноэфирную группу, основной переход является переходом с переносом заряда (СТ), поскольку в данном случае ВЗМО локализована уже на изокумариновом фрагменте, что приводит к снижению ΔE_{ST} до 0.11 эВ с одновременным затуханием флуоресценции в растворе хлористого метилена (ϕ_F (**16qxd**) = 2%). Таким образом небольшое значение ΔE_{ST} для **16qxd** позволяет рассматривать данное соединение в качестве перспективного кандидата для использования в создании TADF-эмиттеров.

ЗАКЛЮЧЕНИЕ И ВЫВОДЫ

1) Разработаны подходы управления эффективностью и селективностью реакции С-Н активации/аннелирования арилкарбоновых кислот с алкинами в синтезе изокумаринов и полиароматических углеводородов. Показано, что донорный пентаметилциклопентадиенильный лиганд (Ср*) способствует образованию изокумаринов в качестве основного продукта реакции, в то время как наличие незамещенного Ср лиганда приводит к преимущественному образованию нафталиновых производных. Кроме того, в случае электронодефицитных субстратов для успешного протекания реакции требуется

увеличение полярности растворителя и силы внешнего окислителя. С помощью разработанных подходов синтезирован широкий круг изокумаринов и полиароматических углеводородов.

- 2) Разработан постадийный подход к синтезу несимметричных окта-замещенных антраценов и пираноноизокумаринов, основанный на предварительной защите одной из карбоксильных групп легкодоступной терефталевой кислоты, внедрении первого алкина, дальнейшем удалении защитной группы и дополнительном аннелировании с участием второго алкина. Установлено, что основным ограничением предложенного метода в синтезе антраценов является использование алкинов с донорными и объемными заместителями, которое приводит к продуктам внедрения только одного эквивалента ацетилена.
- 3) Предложены синтетические пути создания донорно-акцепторных (Д-А) люминофоров с использованием изокумаринов в качестве как акцептороного, так и донорного фрагмента. Установлено, что в случае изокумарин-замещенных изохинолиниевых солей варьирование природы заместителей в изохинолиновом фрагменте позволяет изменять люминесцентные свойства от высокоэффективной флуоресценции по π - π * типу до сильного внутримолекулярного переноса заряда, с локализацией ВЗМО на изокумариновом фрагменте.
- 4) На основании данных DFT-расчетов выдвинуто предположение, что процесс обратимого фотохимического раскрытия изокумаринового кольца может являться основной причиной безызлучательной релаксации. Преодоление данного недостатка возможно при помощи стабилизации возбужденного состояния путем введения NPh₂ группы в положение 6 изокумарина, а также при переводе изокумаринов в соответствующие изохинолоны.

Перспективы дальнейшего развития данной работы заключаются в более подробном изучении фотофизических свойств наиболее перспективных полученных соединений, в том числе на предмет наличия TADF-эффекта, с целью дальнейшего создания на их основе высокоэффективных OLED-устройств. Кроме того, обнаруженные в работе теоретические закономерности и синтетические подходы могут найти применение в рациональном дизайне фотоактивных материалов с заданными свойствами.

Основные результаты работы изложены в публикациях:

Статьи в рецензируемых журналах

1. Molotkov A. P. Effect of Cp-Ligand Methylation on Rhodium (III)-Catalyzed Annulations of Aromatic Carboxylic Acids with Alkynes: Synthesis of Isocoumarins and PAHs for Organic Light-Emitting Devices / A. P. Molotkov, **M. A. Arsenov**, D. A. Kapustin, D. V. Muratov, N. E. Shepel', Y. V. Fedorov, A. F. Smol'yakov E. I. Knyazeva, D. A. Lypenko, A. V. Dmitriev, A. E. Aleksandrov. E. I. Maltsev D. A. Loginov // ChemPlusChem. − 2020. − V. 85. − № 2. − P. 334-345.

- 2. **Arsenov M. A.** Recent advances in the synthesis of isocoumarins and polyaromatic hydrocarbons for photoactive materials / M. A. Arsenov, D. A. Loginov // INEOS OPEN. 2021. V. 4. P. 133-139.
- 3. **Arsenov M. A.** Synthesis of isocoumarins and PAHs with electron-withdrawing substituents: impact of the substituent nature on the photophysical behavior / M. A. Arsenov, Y. V. Fedorov, D. V. Muratov, Y. V. Nelyubina, D. A. Loginov // Dyes and Pigments. 2022. V. 206. P. 110653.
- 4. **Arsenov M. A.** Tandem C–H Annulation Reaction of Benzaldehydes and Aminobenzoic Acids with Two Equivalents of Alkyne toward Isocoumarin-Conjugated Isoquinolinium Salts: A Family of Organic Luminophores / M. A. Arsenov, D. V. Muratov, Y. V. Nelyubina, D. A. Loginov // The Journal of Organic Chemistry. 2023. V. 88. № 13. P. 9360-9371.
- 5. Kharitonov V. B. Facile two-step synthesis of isoquinolones from benzoic acids and alkynes and their comparative photoluminescent study vs isocoumarins / V. B. Kharitonov, M. A. Arsenov, A. A. Danshina, D. A. Loginov // INEOS OPEN. -2023. V. 6. No. 1. P. 10-15.
- 6. Fedina E. S. Synthesis and photophysical activity of 6-substituted isocoumarins / E. S. Fedina, M. A. Arsenov, K. L. Isakovskaya, D. V. Muratov, D. A. Loginov // Mendeleev Communications. − 2024. − V. 34. − № 1. − P. 107-109.
- 7. **Arsenov M. A.** Step-by-step synthesis of unsymmetrically substituted pyranoisocoumarins from terephthalic acid / M. A. Arsenov, A. V. Semenikhin, D. A. Loginov // INEOS OPEN. 2025. V. 8. P. 37-39.
- 8. **Арсенов М. А.** Синтез и фотофизические свойства изокумаринов / М. А. Арсенов, Д. А. Логинов // Успехи химии. 2025. Т. 94. № 7. С. 1-39.

Тезисы конференций

- 1. **M. A. Arsenov**, D. A. Loginov Synthesis of polycyclic aromatic hydrocarbons via C–H activation for photoactive materials // Book of abstracts, Organometallic Chemistry Around the World (7th Razuvaev Lectures), Nizhny Novgorod, Russia, September 16-21, 2019. P. 72.
- 2. **M. A. Arsenov**, D. A. Loginov Synthesis of polycyclic aromatic hydrocarbons via C–H activation for organic light-emitting devices // Book of abstracts, Chemistry of Organoelement compounds and polymers 2019 (INEOS 65); Moscow, Russia, November 19-22, 2019. P. 136.
- 3. **M. A. Arsenov**, D. A. Loginov Expansion of substrate scope for synthesis of polycyclic aromatic hydrocarbons via C-H activation reactions // Book of abstracts, 12th International Conference on Chemistry for Young Scientists, Saint Petersburg, Russia, September 6-10, 2021. P. 177.
- 4. **М. А. Арсенов**, Д. А. Логинов Синтез изокумарин-замещенных изохинолиниевых катионов с помощью каскадной родий-катализируемой СН активации/аннелирования // Сборник тезисов, XXVI Всероссийская конференция молодых учёных-химиков Нижний Новгород, Россия, 18-20 апреля, 2023. С 16.

- 5. **M. A. Arsenov**, D. A. Loginov Aminobenzoic acids as key building blocks for the synthesis of isocoumarin-substituted isoquinolinium salts, indenone imines or indenyl amines // Book of abstracts, «New Emerging Trends in Chemistry», Erevan, Armenia, September 24-28, 2023. P. 73.
- 6. **M. A. Arsenov**, D. A. Loginov Aminobenzoic acids as key building blocks for the synthesis of isocoumarin-substituted isoquinolinium salts, indenone imines or indenyl amines // Book of abstracts, « Modern trends in organometallic chemistry and catalysis», Moscow, Russia, May 23-27, 2023. P. 50.
- 7. **M. A. Arsenov**, D. A. Loginov Synthesis of octa-substituted anthracenes via two sequential rhodium- catalyzed C-H activation/annulations of terephtalic acid // Book of abstracts, 30th International conference on organometallic chemistry «ICOMC», Agra, India, July 14-18, 2024. P. 286.
- 8. **M. A. Arsenov**, D. A. Loginov CpRh(III)—catalyzed two-fold C-H activation/annulation reactions of terephthalic acid for the synthesis of unsymmetrical octa-substituted anthracenes// Book of abstracts, The international conference «Chemistry of Organoelement Compounds and Polymers 2024», Moscow, Russia, November 18-22, 2024. P. 109.