Самосмазывающиеся нанокомпозиты для изготовления искусственных эндопротезов

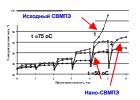
Нанокомпозиты искусственных эндопротезов – нано-сверхвысокомолекулярный полиэтилен (СВМПЭ), получают обработкой порошка СВМПЭ в сверхкритическом диоксиде углерода (ск- CO_2), что позволяет достичь высокой чистоты композиции и большой трибоокислительной стабильности, а также снижает коэффициент трения и износ полимерного образца.

Получение нанопористого сверхвысокомолекулярного полиэтилена (нано-СВМПЭ) с резко (~ в 2 раза) улучшенными антифрикционными свойствами — научно-техническое достижение, поскольку этот продукт создает новые возможности развития нанотехнологических путей создания широкого спектра полимерных материалов, в первую очередь биомедицинской трибологии.

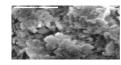
Трение СВМПЭ после обработки полимера ск-CO₂ (65°C, 400 атм.)

P = 0,5 МПа (машина трения типа И-47 K-54)

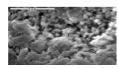
коэффициент трения


свмпэ т=0,2-0,35

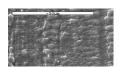
намо-свмпэ


т=0,1-0,2

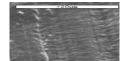
В 2 раза более низкий


Резкое улучшение смазывающей способности – низкая температура фрикционного контакта

Микроэлектронные фотографии СВМПЭ



Исходный



Микрогранулы СВМПЗ после ск-CO₂

Изменение рельефа поверхности СВМПЭ после воздействия ск-СО₂

Исходный

После обработки ск-СО

Микропористость (~15 нм), возникающая в порошке СВМПЭ при обработке ск- CO_2 , сохраняется и в прессованных образцах (190°C, 500 кг/см²)!

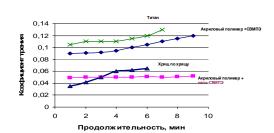
Трибологические испытания полимерных нанокомпозитов на стенде в ЦИТО им. Н.Н. Приорова

Внешний вид образцов перед испытанием.

Испытуемые образцы, смонтированные на испытательной машине

коленный

Трёхкомпонентный эндопротез коленного сустава


тазобедренный

Влияние состава нанокомпозитов на коэффициент трения при испытании моделей эндопротезов тазобедренного сустава

	Состав	№ цикла	Момент кручения, максим., Нм	Момент кручения, миним., Нм	Коэффициент трения усреднённый
1	GUR 1050	10	4.4	-4.2	0.136
2	Смесь GUR 1050 GUR1050 (СК-СО ₂)	10	3.98	-3.8	0.123
3	Смесь GUR 4170 GUR1050 (СК-СО ₂)	10	3.2	-3.07	0.100
4	Смесь GUR 1050 + GUR1050 (СК-СО ₂) + GUR 4170 + GUR1050 (ск-СО ₂) +Ag	10	2.74	-2.57	0.084

В сложных композициях, содержащих GUR 1050 (ск-СО₂), обладающий хорошими смазывающими свойствами, наблюдается постепенное снижение коэффициента трения. Минимальное значение коэффициента трения (0,084) имеет металлонанокомпозит, содержащий наряду с нанопористым СВМПЭ и наночастицы серебра.

Трение акрилового композита, содержащего нано-
СВМПЭ по природному хрящу
(машина трения Optimal SRV, нагрузка 50 H, амплитуда
колебаний – 1,65 мм, частота, - 10 гц)

Коэффициент трения разработанного нанокомпозита по хрящу близок к показателям пары «хрящ по хрящу»