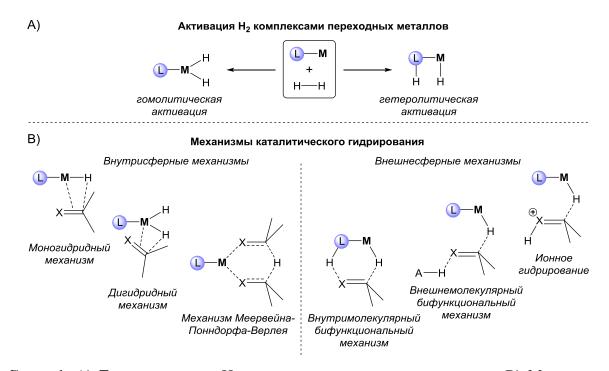
ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ ИНСТИТУТ ЭЛЕМЕНТООРГАНИЧЕСКИХ СОЕДИНЕНИЙ ИМ. А.Н.НЕСМЕЯНОВА РОССИЙСКОЙ АКАДЕМИИ НАУК

ДОКЛАД ОБ ОСНОВНЫХ РЕЗУЛЬТАТАХ НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЫ

КООПЕРАЦИЯ МЕТАЛЛ-ЛИГАНД И МЕТАЛЛ-МЕТАЛЛ В КАТАЛИЗИРУЕМЫХ КОМПЛЕКСАМИ МАРГАНЦА РЕАКЦИЯХ (ДЕ)ГИДРИРОВАНИЯ

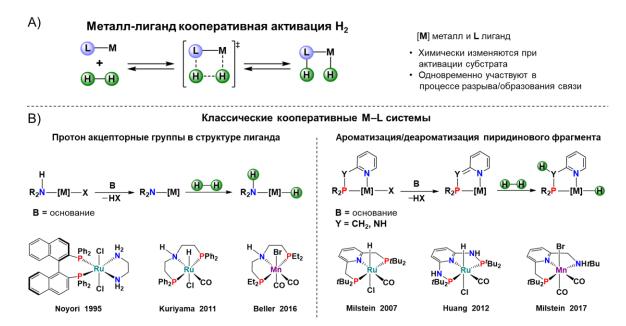
1.4.8 - Химия элементоорганических соединений 1.4.4 - Физическая химия

Автор: Гуляева Екатерина Сергеевна


Научные руководители: д.х.н. Филиппов Олег Андреевич

к.х.н. Осипова Елена Сергеевна

1. Введение


Фундаментальные исследования реакций гидрирования имеют первостепенное значение для разработки более эффективных катализаторов для химической промышленности. Гидрирование в присутствии молекулярного водорода включает стадию его активации катализатором. Этот процесс может осуществляться либо гомолитически, через окислительное присоединение, либо гетеролитически (Схема 1А), при кооперативном взаимодействии металла и лиганда. Источником водорода также могут быть и другие молекулы, как спирты или амин-бораны.

Механизмы реакций гидрирования можно классифицировать в зависимости от природы взаимодействия субстрата с координационной сферой металла в катализаторе (Схема 1В). Так существуют внутрисферные механизмы, где субстрат непосредственно координирован к атому металла, и внешнесферные механизмы, где субстрат взаимодействует только с лигандным окружением металла. При осуществлении внешнесферных механизмов степень окисления металлического центра не меняется, что особенно полезно для комплексов 3d-металлов. Большинство эффективных каталитических систем для гомогенного гидрирования работают по механизму кооперативной металл-лиганд активации (Схема 2А).

Схема 1. А) Типы активации H_2 комплексами переходных металлов. В) Механизмы каталитического гидрирования ненасыщенных связей комплексами переходных металлов.

Существует два основных типа бифункциональных кооперативных систем (Схема 2В). В первом случае активация происходит по связи металл-лиганд, что можно проиллюстрировать на примере наиболее распространённых структур с амино-группой (Схема 2В, *слева*). Второй тип основан на деароматизации пиридинового фрагмента путем депротонирования углеродного или азотного мостика (Схема 2В, *справа*).

Схема 2. А) Внутримолекулярная бифункциональная кооперативная активация H₂. В) Кооперация металл-лиганд на примере комплексов переходных металлов с амин/амидными фрагментами в структуре лиганда: активация по связи M–L (*слева*), ароматизация/деароматизация пиридинового фрагмента лиганда (*справа*).

Ph₂P Mn CO
$$\lambda^3$$
 λ^3 λ^3 λ^5 λ^5 λ^3 λ^3 λ^3 λ^5 λ^3 λ^3 λ^3 λ^3 λ^3 λ^4 λ^5 λ^4 λ^5 λ^4 λ^5 λ^6 λ^6

Схема 3. Кооперативная активация H_2 NHC-фосфиновыми комплексами Mn(I) через образование илидных интермедиатов с пятивалентным фосфором. Реакционная способность циклометаллированных комплексов в активации H_2 .

Ранее в нашей группе было показано, что бидентатный NHC-фосфиновый лиганд (NHC = N-гетероциклический карбен) также может участвовать в кооперативном процессе активации водорода (Схема 5). При депротонировании CH₂-моста образуется циклометаллированный интермедиат, который изомеризуется в неклассический

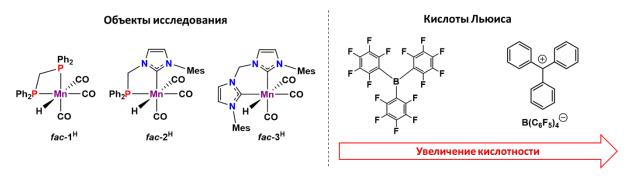
иллидный комплекс с пятивалентным фосфором. Последующая активация водорода приводит к образованию соответствующего гидрида. Это превращение представляет собой новый тип взаимодействия металл-лиганд, применимый в гомогенном катализе (Схема 4). Такие системы являются наиболее активными в гидрировании кетонов соединениями марганца. Аналогичная реакционная способность в активации H_2 наблюдалась и для комплексов со структурно более простыми dppm^R-лигандами (dppm^R = $Ph_2PCH(R)PPh_2$, где R = H, Ph; Схема 5).

Схема 4. Гидрирование кетонов, катализируемое комплексами Mn(I) с NHC-фосфиновыми лигандами.

Схема 5. Активация H_2 комплексами Mn(I) с $dppm^R$ лигандами.

Таким образом, **целью работы** является поиск способов кооперативной активации инертных связей комплексами марганца(I) с бидентатными лигандами в процессах гидрирования и дегидрирования. Для достижения этой цели были поставлены следующие **задачи**:

- 1. Исследовать процессы переноса гидрида и протона для ряда гидридных комплексов Mn(I) с бидентатными лигандами.
- 2. Рационализировать механизм гидрирования кетонов комплексами Mn(I) с фосфин-карбеновыми лигандами, и установить влияние заместителя в мосту между донорными фрагментами лиганда на каталитическую активность.
- 3. Оценить каталитическую активность комплексов Mn(I) в дегидрировании амин-боранов, исследовать механизм реакции и провести оптимизацию каталитического процесса для самого активного комплекса.


2. Перенос гидрид-иона от fac-[(L-L')Mn(CO)₃H] к кислотам Льюиса

Гидриды переходных металлов могут проявлять свойства донора протонов, или доноров гидрид-ионов, в зависимости от условий реакции (Схема 6). До настоящей работы существовала только одна публикация посвящённая экспериментальным исследованиям гидридности комплексов марганца [Т. Ү. Cheng et al. *J. Am. Chem. Soc.* **1998**, *120*, 13121] (Схема 7). В связи с этим на первом этапе были исследован ряд гидридных комплексов марганца(I) с бидентатными лигандами (dppm = Ph₂PCH₂PPh₂; P–NHC = Ph₂PCH₂(NHC); bisNHC = (NHC)CH₂(NHC)) в реакциях с кислотами Льюиса (Схема 8).

Схема 6. Реакционная способность гидридов металлов.

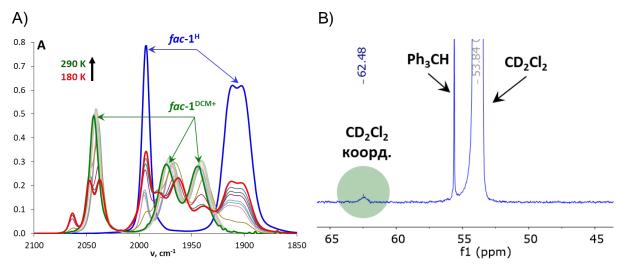

Схема 7. Экспериментальные значения кинетической гидридности карбонильных комплексов Mn(I).

Схема 8. Гидридные комплексы Mn(I) с бидентатными лигандами (*слева*) и кислоты Льюиса (*справа*), выбранные для исследования.

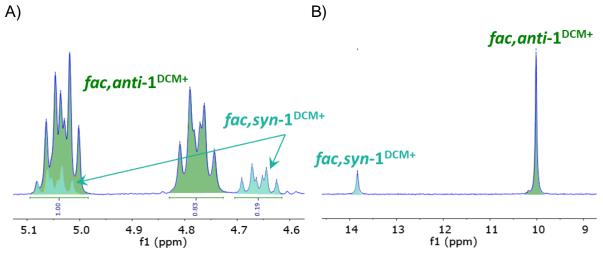

Взаимодействие гидрида марганца с тритильным катионом приводит к образованию комплекса, в котором шестое координационное место занимает молекула растворителя (Схема 9), что подтверждается ИК и ЯМР спектроскопией (Рисунок 1). При комнатной температуре данный катионный комплекс существует в виде смеси двух изомеров (*anti-* и *syn-*), отличающихся только ориентацией металлического цикла (Схема 10, Рисунок 2).

Схема 9. Предполагаемый механизм переноса гидрид-иона от $fac-1^H$ к Ph_3C^+ .

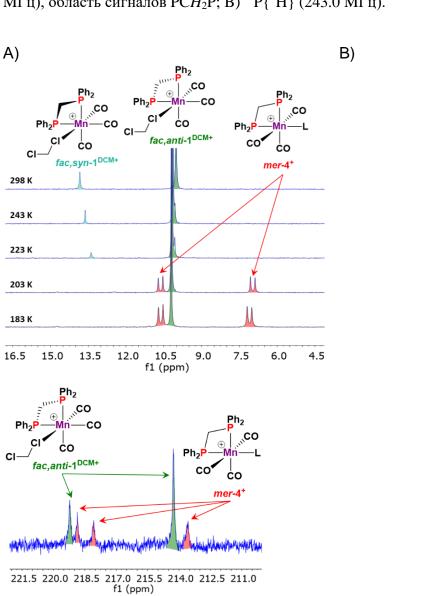


Рисунок 1. А) ИК мониторинг реакции между fac-1^H (c = 0.003 M) и Ph_3C^+ (1 экв.) в CH_2Cl_2 при 180–290; l = 0.05 см. В) Спектр ЯМР $^{13}C\{^1H\}$ (150.9 МГц) комплекса fac- $[\mathbf{1}^{\mathbf{DCM}}]$ (ВА \mathbf{r}_4) в CD_2Cl_2 при 183 K, область сигналов растворителя.

Схема 10. *Anti*- и *syn*-изомеры комплекса fac-[1^{DCM}](BAr₄).

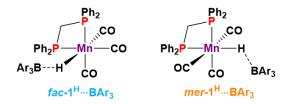


Рисунок 2. Спектры ЯМР комплекса fac-[$\mathbf{1}^{\mathbf{DCM}}$](BAr₄) в CD₂Cl₂ при 298 К: A) 1 H (600.1 МГц), область сигналов РС H_2 P; B) 31 P{ 1 H} (243.0 МГц).

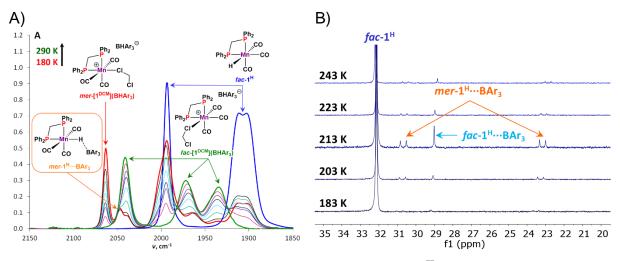


Рисунок 3. Взаимодействие между fac-**1**^H и 1 экв. [Ph₃C]BAr₄: A) ЯМР ³¹P{¹H} (243 МГц) мониторинг в CD₂Cl₂ при 183–293 К. В) Спектр ЯМР ¹³C{¹H} (150.9 МГц) в CD₂Cl₂ при 183 К, область сигналов СО группы.

Ближайшее рассмотрение низкотемпературных ИК-спектров позволяет заметить дополнительную полосу СО, исчезающую при нагревании (Рисунок 1А). Поскольку природа этого промежуточного соединения с более высокой частотой валентных колебаний СО группы, была неясна, был проведён низкотемпературный ЯМРмониторинг (Рисунок 3A). В фосфорных спектрах ЯМР при низкой температуре были обнаружены дублетные сигналы, соответствующие структуре с неэквивалентными атомами фосфора. Наличие ещё и трех различных СО резонансов свидетельствует о геометрии интермедиата mer- $\mathbf{4}^+$ меридиональной (Рисунок 3В). Обнаружение меридионального аддукта $mer-4^+$ указывает на возможность его участия в процессе переноса гидрида. В то же время реакция с более слабой кислотой Льюиса В(С₆F₅)₃ позволила спектрально охарактеризовать $fac-1^{\mathbf{H}}$... \mathbf{BAr}_3 и $mer-1^{\mathbf{H}}$... \mathbf{BAr}_3 интермедиаты процесса переноса гидрида (Схема 11, Рисунок 4).

Схема 11. Нековалентно связанные аддукты fac-**1**^H...BAr₃ и mer-**1**^H...BAr₃.

Рисунок 4. А) ИК мониторинг взаимодействия между fac- $\mathbf{1}^{\mathbf{H}}$ и 1.5 экв. ВА r_3 в CH $_2$ Cl $_2$ при 180–290 К (c=0.003 М, l=0.05 см). В) ЯМР 31 Р 1 Н 1 (243 М Γ ц) мониторинг

реакции между fac- $\mathbf{1}^{\mathbf{H}}$ и BAr_3 в CD_2Cl_2 при 183-243 K, иллюстрирующий образование нековалентно связанных аддуктов fac- $\mathbf{1}^{\mathbf{H}}$... BAr_3 и mer- $\mathbf{1}^{\mathbf{H}}$... BAr_3 .

Меридиональные изомеры гидридов марганца и катионных продуктов менее термодинамически стабильны, чем фасиальные, однако для нековалентных аддуктов наблюдается обратная тенденция. Доминирующий путь реакции проходит через изомеризацию фасиального нековалентного аддукта в более стабильный меридиональный изомер, обладающий большей гидридностью (Схема 12). Отсутствие кинетического изотопного эффекта указывает, что разрыв связи Мп–Н не является скорость определяющей стадией, что подтверждает ключевую роль fac/mer изомеризации в процессе переноса гидрида.

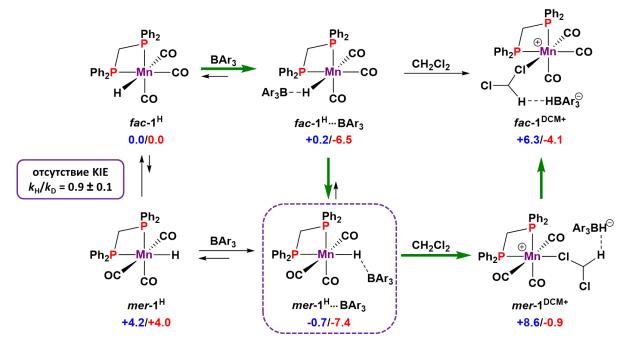
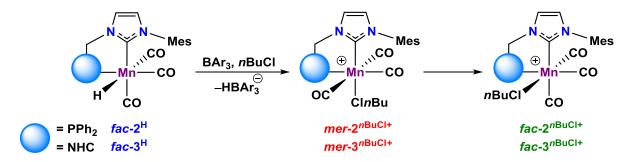
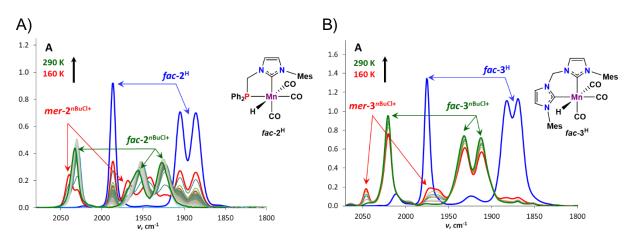
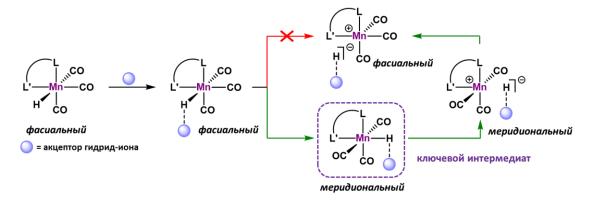




Схема 12. Механизм переноса гидрида от fac- $1^{\rm H}$ к BAr_3 , основанный на результатах DFT расчётов ($\omega B97XD/def2$ - $TZVP/SMD(CH_2Cl_2)$). Значения разницы между свободными энергиями образования комплексов $\Delta\Delta G^{\circ}_{298}/\Delta\Delta G^{\circ}_{190}$ отображены синим/красным и указаны в ккал/моль. Основной путь реакции отмечен зелёными стрелками.


Схема 13. Общий механизм взаимодействия комплексов fac-[(L–L')Mn(CO)₃H] с BAr₃ в nBuCl, (L–L' = P–NHC, bisNHC).

Гидридные комплексы с более электрон донорными лигандами реагируют по аналогичному механизму через образование меридиональных интермедиатов, согласно спектральным наблюдениям (Рисунок 5). Кроме того, скорость реакции ожидаемо увеличивается при возрастании донорности лиганда (Схема 11), а ключевым этапом процесса переноса гидрида является образование *меридиональных* нековалентных аддуктов с повышенной кинетической гидридностью (Схема 12).

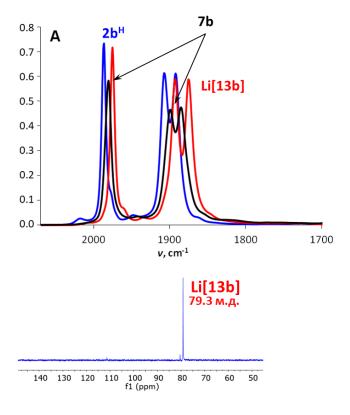
Рисунок 5. ИК мониторинг в nBuCl при 160–290 К реакции 1.1 экв. ВAr₃ с: A) fac- 2^H и В) fac- 3^H ; (c = 0.003 М, l = 0.05 см).

Схема 14. Экспериментальные значения кинетической гидридности комплексов fac-[(L–L')Mn(CO)₃H] (L–L' = dppm, P–NHC, bisNHC).

Схема 15. Возможные пути переноса гидрид-иона от октаэдрических комплексов Mn(I) с бидентатными донорными длигандами fac-[(L-L') $Mn(CO)_3H$].

3. Влияние заместителя в NHC-фосфиновом лиганде комплексов Mn(I) на каталитическое гидрирование кетонов

На следующем этапе был исследован механизм каталитического гидрирования ацетофенона комплексами $fac-2^{Br}$ (Схема 16). Предварительные расчеты показали, что внешнесферный бифункциональный механизм крайне маловероятен (Схема 17). Кроме того, он не согласуется с экспериментальными наблюдениями, изолированный гидрид марганца оказался совершенно неэффективен в гидрировании кетонов, но каталитическая активность может быть восстановлена в присутствии основания (Схема 18), что указывает на более сложную механистическую картину.


Схема 16. Комплекс Mn(I) с NHC-фосфиновым лигандом fac- $\mathbf{2}^{\mathbf{Br}}$: fac- $\mathbf{2a}^{\mathbf{Br}}$ (R = H); fac, syn- $\mathbf{2b}^{\mathbf{Br}}$ (R = Ph).

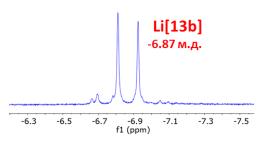

Схема 17. Механизм концертной активации ацетофенона гидридными комплексами Mn(I) *fac-***2a**^H и *fac,syn-***2b**^H.

Схема 18. Возможные пути переноса гидрид-иона от октаэдрических комплексов Mn(I) с бидентатными донорными длигандами fac-[(L-L') $Mn(CO)_3H$].

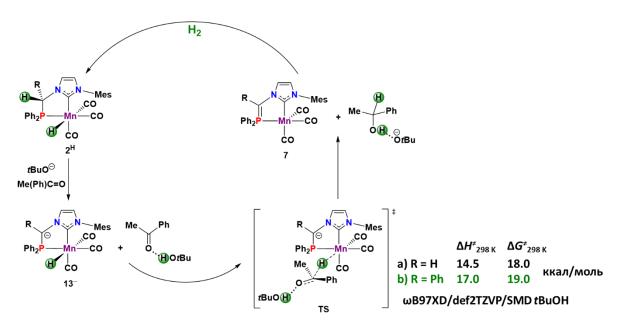

Для рационального объяснения роли основания, было проведено исследование модельных реакций (Схема 19). Использование сильного основания LDA позволило получить и охарактеризовать гидридный комплекс Li[13b] с депротонированным мостом (Рисунок 6). Его реакция с дифенилкетоном при комнатной температуре приводит к образованию циклометилированного комплекса 7b и продукта гидрирования кетона, что позволило предположить ключевую роль анионных гидридов марганца в гидрировании кетонов.

Схема 19. Образование комплекса Li[**13b**] при взаимодействии комплекса **2b**^H с избытком LDA (5 экв.), и его последующее взаимодействие с дифенилкетоном.

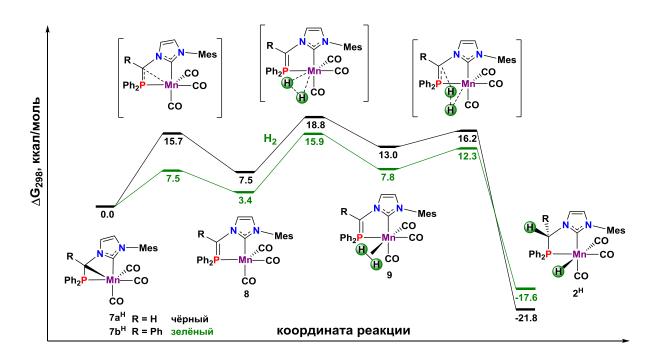


Рисунок 6. А) ИК спектры комплекса $2\mathbf{b}^{\mathbf{H}}$ (n=0.019 ммоль, синий) и смеси после добавления LDA (5 экв., красный) при 243 К (-30° С) и дифенилкетона (2 экв., чёрный) при комнатной температуре в ТГФ; l=0.01 см. В) Спектры ЯМР 31 Р{ 1 H} (162.0 МГц, вверху) и 1 H (400.1 МГц, внизу) смеси комплекса $2\mathbf{b}^{\mathbf{H}}$ (n=0.038 ммоль) и LDA (5 экв.) в ТГФ- d_{8} при 243 К (-30° С).

Схема 20. Внешнесферный межмолекулярный механизм гидрирования ацетофенона анионными комплексами **13**⁻.

Схема 21. Рассчитанные (DFT/BP86/def2-TZVP/SMD(толуол)) энергетические профили кооперативной активации H_2 комплексами **7a** (чёрный) и **7b** (зелёный). Значения ΔG_{298} приведены в ккал/моль относительно **7a** или **7b** для каждого профиля, соответственно.

Действительно, внешнесферный межмолекулярный механизм, в котором анионный гидрид 13^- выступает в качестве донора гидрид-иона, а бутиловый спирт в качестве

донора протона, имеет разумные барьеры активации (Схема 20). Несмотря на то, что эти цифры не объясняют более высокой активности фенил замещённого комплекса в сравнении с незамещённым аналогом, этот эффект связан с большей стабильностью фенил-замещённых анионных интермедиатов 13^- и более лёгкой активацией водорода на последней стадии каталитического цикла, как видно из энергетического профиля стехиометрической активации водорода фосфин-карбеновыми комплексами 2^{Br} (Схема 21).

4. Mn(I)-катализируемое дегидрирование амин-боранов

В заключительной части диссертационной работы был исследован процесс дегидрировния диметиламин-борана (Me_2NHBH_3) катионнымы комплексами Mn(I) (Схема 22). Даже в неоптимизированных условиях катионный комплекс с bisNHC лигандом 3^{nBuCl+} продемонстрировал достаточно высокую активность в сравнении с другими каталитическими системами на основе марганца (Схема 23), что свидетельствует о потенциальной возможности создания высокоэффективного катализатора для дегидрирования амин-боранов.

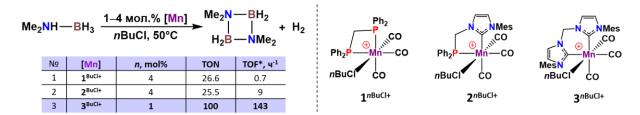
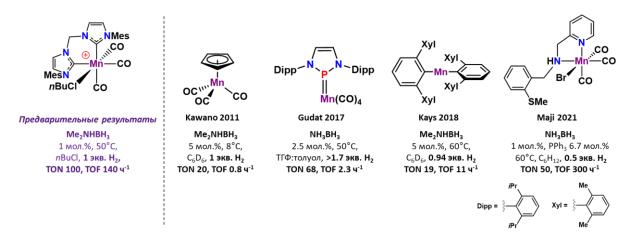



Схема 22. Дегидрирование Me₂NHBH₃ в присутствии катионных комплексов Mn(I).

Схема 23. Сравнение каталитической активности комплексов на основе марганца в дегидрировании Me₂NHBH₃.

Процесс оптимизации условий реакции показал, что для эффективного процесса дегидрирования необходим катионный комплекс, который генерируется из стабильного бромида марганца и абстрактора галогена (Схема 24). Активность системы улучшается в присутствии некоординирующего растворителя и абстрактора галогена с некоординирующим противоионом.

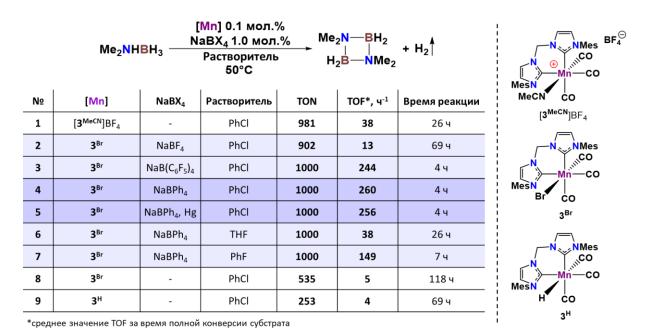
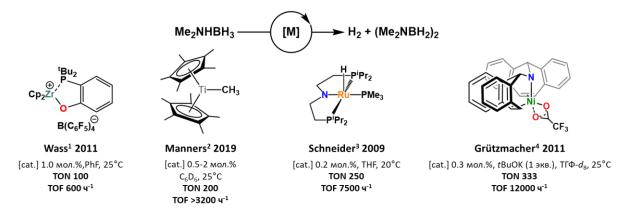



Схема 24. Оптимизация Мп-катализируемой реакции дегидрирования Ме₂NHBH₃.

В оптимизированных условиях катализатор способен совершать более 18000 циклов с максимально возможной скоростью около 1200 оборотов в час. Система также продемонстрировала умеренную активность и на менее реакционноспособных субстратах при загрузках менее 1 мол.% (Схема 25).

Схема 25. Дегидрирование различных амин-боранов в присутствии 3^{Br}/NaBPh₄.

Стоит отметить, что предложенная каталитическая система **3**^{Br}/NaBPh₄ оказалась конкурентоспособной с самыми активными каталитическими системами для дегидрирования диметиламин-борана (Схема 26). Однако остаётся неясным вопрос о механизме реакции, так как большинство существующих на данной момент каталитических систем содержат кислотный и основный центр (Схема 27), а в исследованном катионном комплексе основный центр отсутствует.

Схема 26. Наиболее активные комплексы на основе 3d металлов для дегидрирования Me_2NHBH_3 .

Схема 27. Бифункциональная активация N–H и B–H связей в Me₂NHBH₃ комплексами переходных металлов.

Несмотря на то, что катион образует комплекс с Me₂NHBH₃ как кислота Льюиса, перенос гидрида в данном аддукте невыгоден (Схема 28А). В то же время, гидридный комплекс марганца(I) может выступать в роли основания, и протонироваться XH кислотами, например, гексафторизопропанолом (HFIP), но в случае диметиламинборана перенос протона будет не выгоден (Схема 28В). На основании ранее полученных нашей группой результатов для других биметаллических систем [Е. S. Osipova et al. *Chem. Sci.* 2021, *12*, 3682–3692], было сделано предположение, что активация

N–H

и
В–Н связей осуществляется через тройной аддукт Me₂NHBH₃ с катионным и гидридным комплексами марганца(I) (Схема 28С). И, действительно, добавление гидрида марганца в реакционную смесь улучшает эффективность каталитической системы, за счёт исчезновения индукционного периода (Рисунок 7).

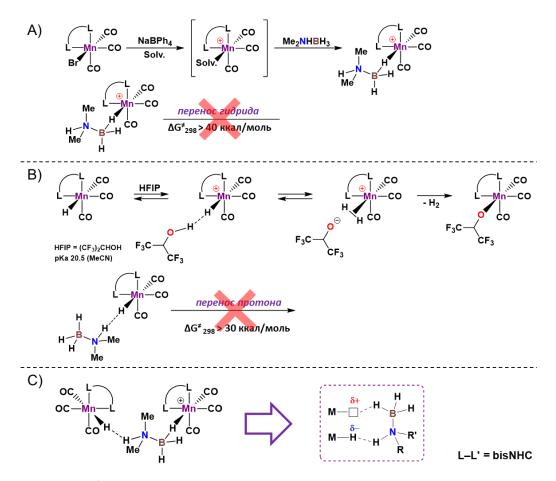
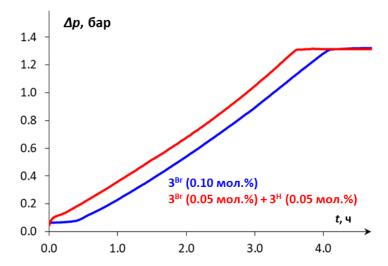
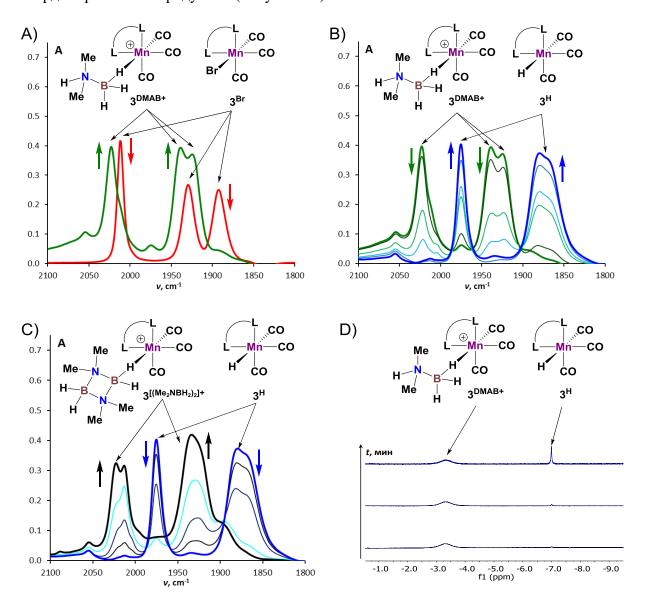




Схема 28. А) Образование аддукта Me₂NHBH₃ с катионным комплексом Mn(I). В) Протонирование гидридного комплекса Mn(I) гексафторизопропанолом (*вверху*) и диметиламин-бораном (*внизу*). С) Активация N–H и B–H связей через образование тройного аддукта Me₂NHBH₃ с катионным и гидридным комплексами марганца(I).

Рисунок 7. Кинетические профили зависимости Δp от времени для дегидрирования Me_2NHBH_3 в PhCl при 50°C, катализируемого $\mathbf{3^{Br}}/NaBPh_4$ (0.1 мол.% / 1 мол.%; синий) или смесью $\mathbf{3^{Br}}/\mathbf{3^H}/NaBPh_4$ (0.05 мол.% / 0.05 мол.% / 1 мол.%, красный).

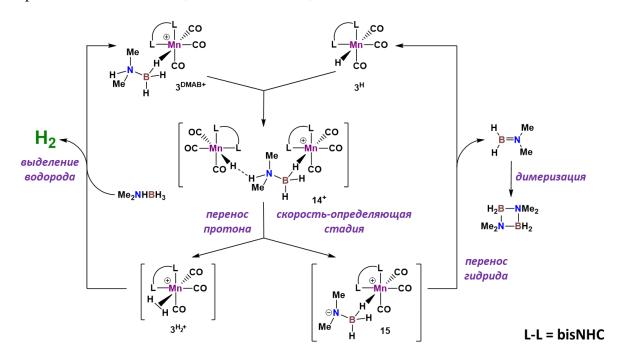

Спектральный мониторинг реакции показал, что катион марганца координирует молекулу Me₂NHBH₃ (Рисунок 8A), и затем трансформируется в гидридный комплекс (Рисунок 8B). Одновременное присутствие катионного и гидридного комплексов было зафиксировано также в ЯМР спектрах (Рисунок 8D), в подтверждение нашей гипотезы о тройном комплексе. По окончании реакции в системе остаётся катионный комплекс с координированным продуктом (Рисунок 8C).

Рисунок 8. Мониторинг дегидрирования Me_2NHBH_3 ($c_0 = 0.30$ M) в присутствии $\mathbf{3^{Br}}$ (3.3 мол.%) и $NaBPh_4$ (16.5 мол.%), L-L=bisNHC. ИК спектры (область v_{CO}) в CH_2Cl_2 при $30^{\circ}C$; l=0.01 см: А) комплекса $\mathbf{3^{Br}}$ (красный) и реакционной смеси через 2 мин. после добавления Me_2NHBH_3 (зелёный). В) реакционной смеси от 2 мин. (зелёный) до 20 мин. (синий) и C) реакционной смеси от 20 мин. (синий) до 40 мин. (чёрный)

реакционного времени. D) Спектры ЯМР 1 Н (400.1 МГц, CD₂Cl₂, 25 $^{\circ}$ С) реакционной смеси после добавления Me₂NHBH₃.

На основе полученных данных был предложен механизм реакции (Схема 29), где ключевым интермедиатом является тройной комплекс $\mathbf{14}^+$. В результате переноса протона в $\mathbf{14}^+$ образуется диводородный комплекс марганца $\mathbf{3^{H_2+}}$. Он теряет молекулу \mathbf{H}_2 , регенерируя катионный комплекс $\mathbf{3^{DMAB+}}$. Перенос гидрида в оставшемся цвиттерионном комплексе $\mathbf{15}$, приводит к образованию гидридного комплекса марганца $\mathbf{3^H}$ и замыканию каталитического цикла. Перенос протона является скорость-определяющей стадией, что экспериментально подтвердилось соответствующими значениями кинетического изотопного эффекта для дейтерированных производных диметиламинборана : $\nu_{\text{NHBH}}/\nu_{\text{NDBH}} = 2.1$, $\nu_{\text{NHBH}}/\nu_{\text{NHBD}} = 1.5$, $\nu_{\text{NHBH}}/\nu_{\text{NDBD}} = 2.9$.

Схема 29. Механизм дегидрирования Me_2NHBH_3 в присутствии $3^{Br}/NaBPh_4$.

5. Заключение

- 1. Исследования гидридного переноса от комплексов fac-[(L–L')Mn(CO)₃H] к кислотам Льюиса (B(C₆F₅)₃, [Ph₃C](B(C₆F₅)₄) показали, что ключевой стадией является образование нековалентносвязанных аддуктов с mepuduoнaльной геометрией, обладающих повышенной кинетической гидридностью.
- 2. Для комплексов (L–L')Mn(CO)₃H впервые была проведена экспериментальная характеризация катионных комплексов и нековалентносвязанных аддуктов с *меридиональной* геометрией.
- 3. Кинетическая гидридность комплексов fac-[(L–L')Mn(CO)₃H] увеличивается при замене фосфиновых групп на более электрон донорные N-гетероциклические карбены: fac-[(dppm)Mn(CO)₃H] < fac-[(P–NHC)Mn(CO)₃H] <<< fac-[(bisNHC)Mn(CO)₃H]
- 4. Депротонирование комплексов fac-[(L–L')Mn(CO)3H] сильными основаниями (LDA, KHMDS) происходит по мосту лиганда. Образующиеся анионные гидриды fac-[(P–NHC)Mn(CO)₃H] $^-$ являются интермедиатами в реакциях гидрирования кетонов комплексами fac-[(P–NHC)Mn(CO)₃Br].
- 5. Показано, что введение фенильного заместителя увеличивает кислотность связи С–Н в мосту лиганда, стабилизирует анионный гидридный комплекс Mn(I), необходимый для переноса гидрид-иона на приводя к увеличению каталитической активности.
- 6. При дегидрировании амин-боранов системой *fac*-[(bisNHC)Mn(CO)₃Br]/NaBPh₄ активация N–H и B–H связей происходит за счет межмолекулярной кооперации катионного и гидридного комплексов марганца (I) , образующихся в реакционной смеси из одного общего монометаллического предшественника, что отличается от ранее описанных в литературе биметаллических систем на основе двух разных металлов.
- 7. Оптимизация каталитической системы fac-[(bisNHC)Mn(CO)₃Br]/NaBPh₄ позволила добиться рекордной производительности для Me₂NHBH₃ (TON > 18200, TOF > 1200 ч⁻¹), что превосходит существующие катализаторы на основе 3d металлов более чем в 50 раз.

Основное содержание работы изложено в следующих публикациях:

- Gulyaeva E.S. Impact of the Methylene Bridge Substitution in Chelating NHC-Phosphine Mn (I) Catalyst for Ketone Hydrogenation / E.S. Gulyaeva, R. Buhaibeh, M. Boundor, K. Azouzi, J. Willot, S. Bastin, C. Duhayon, N. Lugan, O.A. Filippov, J.B. Sortais, D.A. Valyaev, Y. Canac // Chem. Eur. J. 2024. Vol. 30. № 22. P. e202304201.
- Gulyaeva E.S. Two active species from a single metal halide precursor: a case study of highly productive Mn-catalyzed dehydrogenation of amine-boranes via intermolecular bimetallic cooperation / E.S. Gulyaeva, E.S. Osipova, S.A. Kovalenko, O.A. Filippov, N.V. Belkova, L. Vendier, Y. Canac, E.S. Shubina, D.A. Valyaev // Chem. Sci. 2024. Vol. 15. № 4. P. 1409–1417.
- 3. Osipova E.S. *Fac*-to-*mer* isomerization triggers hydride transfer from Mn(I) complex *fac*-[(dppm)Mn(CO)₃H] / E.S. Osipova, <u>E.S. Gulyaeva</u>, N.V. Kireev, S.A. Kovalenko, C. Bijani, Y. Canac, D.A. Valyaev, O.A. Filippov, N.V. Belkova, E.S. Shubina // Chem. Commun. − 2022. − Vol. 58. − № 32. − P. 5017−5020.
 - <u>Gulyaeva E.S.</u> Towards ligand simplification in manganese-catalyzed hydrogenation and hydrosilylation processes / <u>E.S. Gulyaeva</u>, E.S. Osipova, R. Buhaibeh, Y. Canac, J.B. Sortais, D.A. Valyaev // Coord. Chem. Rev. 2022. Vol. 458. P. 214421.